Low Energy Reconstruction with Pandora: Handling backgrounds

Matthew Osbiston

Monday 13th May | FD Sim/Reco Meeting

Moving to **phase 2**

Previous Pandora Development: Beam neutrino interactions

Now: Low energy neutrino interactions

- 1. Improve the pattern recognition for **individual low energy neutrino** events
- 2. Adapt reconstruction to handle a more realistic readout from FD with backgrounds
- 3. Explore **analysis-reconstruction continuum** exploit tailored reconstruction and use physics focused analysis to refine performance

Low Energy Reconstruction Algorithms: Work plan

- 1. Trained a **DL neural network** for **vertex identification** using <u>MARLEY samples</u> (5-30 MeV) at high stats (50k)
- 2. Retuned **2D to 3D cluster matching** algorithms to match low energy topologies and reconstruct particles lowered threshold criteria
- 3. Wrote new algorithm using a **BDT** to drive **2D clustering decisions**, trained on low energy samples separate **photons** and **electrons** in to individuals objects

Now:

1. Trained a **DL neural network** for **signal vs background separation** using new MARLEY samples (5-70 MeV) at low stats (3.7k)

DLSignal Algorithm Development: New Sample production

LArSoft Version

version = v09_82_02d01

Config file fhicls: ['-c', '/exp/dune/app/users/osbiston/POMS/config.cfg'] Find more on input here gen_fcl = prodmarley_nue_flat_radiological_decay0_dunevd10kt_1x8x14_3view_30deg.fcl g4_stage1_fcl = supernova_g4stage1_dunevd10kt_1x8x14_3view_30deg.fcl g4_stage2_fcl = standard_g4stage2_dunevd10kt_1x8x14_3view_30deg.fcl detsim_fcl= standard_detsim_dunevd10kt_1x8x14_3view_30deg.fcl reco1_fcl= standard_reco1_dunevd10kt_1x8x14_3view_30deg.fcl reco2_fcl= matt.fcl matt.fc MyPandoraSettings Master Standard.xml #include "standard_reco2_dunevd10kt_1x8x14_3view_30deg.fcl" pandora> process_name: RecoPandora <!-- GLOBAL SETTINGS --> <IsMonitoringEnabled>true</IsMonitoringEnabled> # Use custom settings file <ShouldDisplayAlgorithmInfo>false</ShouldDisplayAlgorithmInfo> physics.producers.pandora.ConfigFile: "MyPandoraSettings Master Standard.xml" <SingleHitTypeClusteringMode>true</SingleHitTypeClusteringMode> physics.reco: [@sequence::dunefd vertdrift tpc reco2] <!-- ALGORITHM SETTINGS --> <algorithm type = "LArEventWriting"> <EventFileName>marley_flat_1x8x14_5_70MeV_run5.pndr</EventFileName> <ShouldWriteEvents>true</ShouldWriteEvents> <ShouldOverwriteEventFile>true</ShouldOverwriteEventFile> <ShouldWriteMCRelationships>true</ShouldWriteMCRelationships> 3730 (20 GB) events total <ShouldWriteTrackRelationships>true</ShouldWriteTrackRelationships> <GeometryFileName>Pandora Geometry.xml</GeometryFileName> <ShouldWriteGeometry>false</ShouldWriteGeometry> <ShouldOverwriteGeometryFile>true</ShouldOverwriteGeometryFile> MARLEY 5-70 MeV with CC and ES int. in 1x8x14 VD geometry with backgrounds (decay0) <LArCaloHitVersion>2</LArCaloHitVersion> </algorithm>

DLSignal Algorithm Development: New Sample production

• Event shown in 256x256 pixel display

• Detector dimensions: 650cm x 2090.9cm

100 -

150

250

- Wire Pitch:
 0.51cm in x
 0.76cm in z
- Each pixel here represents several hits
- Pixel: 2.54cm x 8.17cm

Х

DLSignal Algorithm Development : NN Training

The network:

- Same architecture as vertexing network
- Using Andy Chappell's original notebook structure
- Classes: 0 Null, 1- Background, 2 Signal
- Weighting to account for uneven representation for signal/background/null pixels **Initial result:**

Network Training: Null: 54,200,000 pixels Background: 2,730,00 pixels Signal: 6,400 pixels

Total events: 730

6

DLSignal Algorithm: NN Performance

Refinement 1:

Train on higher stats (3.7k vs 730) and adjusting the weight function (upweights lower represented classes) for equal representation

DLSignal Algorithm: NN Training two pass approach

Pass 1 Identifies Region of Interest

Truth ADC

200

250

Network Identified "Signal" Output Pixels (Hits)

9

DLSignal Algorithm: NN Training two pass approach

Pass 2

Zooms in for direct hit-to-pixel correspondence **ADC**

Truth Pa

Note: All hits in proximity of area of interest fed back in to Pass 2 to try to collect as many sparse signal hits as possible

Yellow - Truth

DLSignal Algorithm Development:

- Can this be pushed further? ٠
- Seems like lots of the photons aren't identified?
- Perhaps create a distinct class for photons to ٠

allow network to learn more about them

DLSignal Algorithm: NN Training Pass 2 Pass 2

W View	Null	Background	Photon	Electron
Weights	0.94	4.69	8.03	5.47
Stats	39,000,000	63,400	7,320	34,100

U View	Null	Background	Photon	Electron
Weights	0.99	4.08	8.29	5.90
Stats	40,100,000	139,000	8,180	31,700

[[134	43685.	22.	з.	32.]
[9.	41779.	1912.	1592.]
[ø.	204.	293.	365.]
[49.	900.	465.	9106.]]

Update: Modified pass 2 to include electron (class 3) and photon (class 2) class. Both of these classes are added to the same CaloHitList

V View	Null	Background	Photon	Electron
Weights	1.01	4.26	8.31	5.90
Stats	38,000,000	120,000	8,340	32,800

[[126	56922.	32.	7.	29.]
]	11.	41929.	1584.	1320.]
]	Θ.	734.	481.	425.]
]	7.	1053.	684.	8846.]]

13

DLSignal Algorithm : Implementation in reconstruction chain

- Implemented at beginning of reconstruction chain
- Runs in two separate instances
- First instances runs pass one training of the NN over 256x256p and outputs a new CaloHitList
- Second Instance instances runs pass two training of the NN over 128x128p and outputs a new CaloHitList for

each view and background CaloHitList

Low Energy Modifications

NOXVA

DLSignal Algorithm : Results and refinement DLSignalAlg in action!

Reconstruction with LowE modifications shown before

15

DLSignal Algorithm : Final Metric Results

• Impressive efficiency for electron reconstruction – 3.7k events included

(note 50% purity and 50% completeness requirement for reach reconstructed particle)

2.35s (avg) - process an event in Pandora

Reconstruction – Analysis Continuum: What comes next?

• Aim: Maximise separation of signal and background energy deposition in detector

- Conduct Low Energy Analysis using remastered reconstruction to drive real-world considerations
 - Make fits of reconstructed samples compared to supernova model expectations

Backup

Dark Blue, Black 2 PFOs, Light Blue is missed MC not included in PFO

PFO Split in to Track and Shower

DLSignal Algorithm : Final Metric Results

• Impressive efficiency for electron reconstruction – 3.7k events included

(note 50% purity and 50% completeness requirement for reach reconstructed particle)

Background/Signal Work

Implementation:

- New code in larpandoradlcontent/LArSignalId
 - DISignalAlgorithm.h
 - DISignalAlgorithm.cc
- Uses similar structure to DIVertexing
- Much more simplified structure/functions
- Converts CaloHit positions to a relative 256x256 pixel
- Runs event 'pixels' through network
- Creates mapping between signal pixels and CaloHits and adds to new SCaloHitListX, which is returned

PandoraSettings_Neutrino_DUNEFD_VD_LowE.xml

- Runs after LArPreProcessing and before LArDIVertexing
- Outputs new 'signal list with Prefix 'S' Used by subsequent algs

Function Calls:

Run

- PrepareTrainingSample
- Infer
 - MakeNetworkInputFromHits
 - GetMCToHitsMap
 - CompleteMCHierarchy
 - GetHitRegion

https://github.com/MattOsbiston/LArReco/tree/feature/Rocky9_signalbackground/setting

https://github.com/MattOsbiston/LArMachineLearningData/tree/feature/Rocky9_signalbackground/PandoraNetworkData

https://github.com/MattOsbiston/LArContent/blob/feature/Rocky9_signalbackground/larpandoradlcontent/LArSignalId/DISignalAlgorithm.cc

Low Energy Reconstruction: Previous Work

- Deep Learning Vertex Position
 - Improved vertex efficiency leads to greater reconstruction efficiency
 - · Vertex position used in logic in downstream algorithms
- Electrons with 40 80 hits
 - Despite more accurate vertex, reconstructed clusters are still split
 - 2D to 3D cluster matching creates split particles below threshold

Next step:

Algorithm Development: Understanding standard Pandora

Cluster Merging Algorithm Design: Parameters

12 Parameters

Parameters to compare for each pairwise cluster choice:

1. Distance between centroid of each cluster

2/3. x and z component of vector between centroid of each cluster

- 4. Angle between centroid and interaction vertex
- 5. Minimum distance between a hit in each cluster
- 6. Average distance between each hit in each cluster
- 7/8. Total ADC of each cluster
- 9/10. Number of hits in each cluster
- *11. Number of hits in contact with hits in other cluster
- *12. Number of hits in proximity to hits in other cluster*Not represented

Х

Merging BDT v8

- \succ **BDT Training stats**
- \geq 12 Parameters

Vertex Region

Merging Algorithm: Particle Efficiency with BDT Cuts

Expected supernova core-collapse signal: SNOwGLoBEs

- Make fits of reconstructed samples compared to supernova model expectations
 - SNOwGLoBEs fast event rate calculation tool
 - MARLEY Monte Carlo Event Generator for LAr interactions

Work developed in conjunction with Low Energy Working Group

40 kton LAr, 10 kpc SN

Channel	Liver-more	GKVM	Garching
$v_e + {}^{40} \mathrm{Ar} o e^- + {}^{40} \mathrm{K}^*$	2648	3295	882
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \rightarrow e^+ + {}^{40}\operatorname{Cl}^*$	224	155	23
$\nu_X + e^- \rightarrow \nu_X + e^-$	341	206	142
Total	3213	3656	1047

ve dominant signal

ve Charged current events with arbitrary normalisation

https://indico.cern.ch/event/1199289/contributions/5447099/attachments/2705699/4697057/DUNE_LEP_CCuesta.pdf

