Experimental verification of
integrability in a Danilov-
Nagaitsev lattice using machine
learning



Applications of Al/ML in accelerators

Present uses of Al/ML methods in particle accelerators:

Surrogate models, optimization, control, virtual diagnostics, and anomaly
detection.

These aim to improve design and operations based on well-known
physics.

Can Al/ML be used for discovering new physics? High-energy and
astrophysics fields are making progress.

Institute for Artificial Intelligence and
Fundamental Interactions (IAIFI),
https://aiinstitutes.org/institute-iaifi/
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Synergies with Non-linear Integrable Optics
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Machine Learning Conservation Laws from Trajectories
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We present Al Poincaré, a machine learning algorithm for autodiscovering conserved quantities using
trajectory data from unknown dynamical systems. We test it on five Hamiltonian systems, including the
gravitational three-body problem, and find that it discovers not only all exactly conserved quantities, but
also periodic orbits, phase transitions, and breakdown timescales for approximate conservation laws.

DOI: 10.1103/PhysRevLett.126.180604

Many more published after this one...

Possible applications in accelerators:

1. Analyze integrability in realistic accelerator systems, in the presence of non-ideal
effects such as noise, parasitic non-linearities, decoherence, etc.

2. Maximize dynamic aperture by using integrability as an analogous metric.
3. Discover new NIO systems.
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Auto-discovering invariants using Al Poincaré

Intuition: Total number of phase-space dimensions = Number of

invariants + Dimensionality of manifold

Scale, Center, filter out linear Train pull network (Neural
invariants using Principal — Empirical Bayes) with length
Component Analysis (PCA) scale L,
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S. Saremi and A. Hyvarinen, J. Mach. Learn. Res. 20, 181:1, 2019

Ziming Liu and Max Tegmark, Phys. Rev. Lett. 126, 180604, 2021

nilanjan@fnal.gov Discovering invariants in beam data using Al Poincaré

4




Performance with data from simulations

Al Poincaré can detect invariant quantities in accelerator optics.
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Linear lattice with thin
sextupole kick.
max{n.¢} ~ 1.85

Linear lattice with thin
McMillan kick.
max{ngs} ~ 1.99
Dimensionality is 2
throughout the
manifold.



Experimental data from the DN system

Procedure

* Inject 150 MeV electrons into IOTA
and capture into 1 bucket. (1 bunch)

* Let the electron beam orbit reach
equilibrium.

Apply transverse momentum kicks
using electrostatic kickers.

* Measure turn-by-turn centroid
position data on many BPMs
distributed around the ring.

* Use PCA to compute turn-by-turn
phase-space trajectory (x, x,y, y') at a
virtual BPM.
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New data: t=-0.238, 10/23/23.
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Applying Al Poincaré to experiment

(a) 2N

Applying the algorithm to -
data from all 200 turns. |

Results depend on
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Manifold traced by beam
centroid is not a perfect
torus due to decoherence.
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Applying Al Poincaré to first 50 turns

New data: t=-0.238, 10/23/23
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Training a neural network to model the
invariants for a fixed DN magnet strength

Using a modified version of Al Poincaré 2.0, | 2mnet verun Madhavan and Vex

Tegmark, Phys. Rev. E 106, 045307, 2022.

Constant value on Gradients of invariants must be orthogonal to
the manifold tangent (flow) vectors. [Used in Al Poincaré 2.0]
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Does not work uniformly on new data sets!

Discovering invariants in beam data using Al Poincaré 10



. 1.5
Conclusion
0.5
0.0

* Al Poincaré can verify the presence
of invariants in experimental data. 00
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 The structure of the manifold
inferred from the data is consistent
with theory.
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* We can reconstruct approximate
invariant functions from the data,
but the process doesn’t work on all
datasets and only qualitative
agreement can be seen within the
sampled domain.
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Next Steps

* Finish writing proceeding and draft poster.

* Determine which datasets are more amenable to this analysis and
why?

* Develop statistics and quantitative predictions.
* Generalize the invariant network to multiple DN magnet strengths.
* Consider publication?



