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Applications of AI/ML in accelerators

Present uses of AI/ML methods in particle accelerators:
Surrogate models, optimization, control, virtual diagnostics, and anomaly 
detection.

These aim to improve design and operations based on well-known 
physics.
Can AI/ML be used for discovering new physics? High-energy and 
astrophysics fields are making progress.
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Institute for Artificial Intelligence and 
Fundamental Interactions (IAIFI), 
https://aiinstitutes.org/institute-iaifi/



Synergies with Non-linear Integrable Optics 

Many more published after this one…
Possible applications in accelerators:
1. Analyze integrability in realistic accelerator systems, in the presence of non-ideal 

effects such as noise, parasitic non-linearities, decoherence, etc.
2. Maximize dynamic aperture by using integrability as an analogous metric.
3. Discover new NIO systems.
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Auto-discovering invariants using AI Poincaré

Intuition: Total number of phase-space dimensions = Number of 
invariants + Dimensionality of manifold
Scale, Center, filter out linear 
invariants using Principal 
Component Analysis (PCA)

Dimensionality determination 
using Principal Component 
Analysis (PCA)

Ziming Liu and Max Tegmark, Phys. Rev. Lett. 126, 180604, 2021
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Sample local hyperplane 
of dimension Ndim - Ninv

Train pull network (Neural 
Empirical Bayes) with length 
scale L,
Monte Carlo sampling of 
local tangent space

S. Saremi and A. Hyvarinen, J. Mach. Learn. Res. 20, 181:1, 2019

Learn global 
structure of 
manifold



Performance with data from simulations

AI Poincaré can detect invariant quantities in accelerator optics.

nilanjan@fnal.gov Discovering invariants in beam data using AI Poincaré 5

Linear lattice with thin 
sextupole kick.
max{neff} ~ 1.85
Local dimensionality is 
2 in certain locations 
of the manifold.

Linear lattice with thin 
McMillan kick.
max{neff} ~ 1.99
Dimensionality is 2 
throughout the 
manifold.



Experimental data from the DN system

Procedure
• Inject 150 MeV electrons into IOTA 

and capture into 1 bucket. (1 bunch)
• Let the electron beam orbit reach 

equilibrium.
• Apply transverse momentum kicks 

using electrostatic kickers.
• Measure turn-by-turn centroid 

position data on many BPMs 
distributed around the ring.
• Use PCA to compute turn-by-turn 

phase-space trajectory (x, x’, y, y’) at a 
virtual BPM.
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Decoherence of centroid 
position due to tune spread

Decoherence 
leads to decay 
of signal

Fast oscillations 
indicate violation 
of invariance

New data: t=-0.238, 10/23/23.
66 datasets with same kick amplitude.



Applying AI Poincaré to experimental data

Applying the algorithm to 
data from all 200 turns.
Results depend on 
dataset.

Manifold traced by beam 
centroid is not a perfect 
torus due to decoherence.
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Old data: t=-0.238, When?
𝑛!""~1 New data: t=-0.238, 10/23/23

𝑛!"" = 0.63 ± 0.38



Applying AI Poincaré to first 50 turns

Applying the algorithm to 
the first 50 turns, yields 
two invariants.
We verify that the 
manifold learnt by the pull 
network in AI Poincaré is 
of the correct structure by 
asking it to pull the 
experimental data back to 
the manifold and 
computing the theoretical 
invariants.
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The inferred manifold approximately conserves both 
theoretical invariants.

New data: t=-0.238, 10/23/23
𝑛!"" = 1.86 ± 0.23



Training a neural network to model the 
invariants for a fixed DN magnet strength
Using a modified version of AI Poincaré 2.0.
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Ziming Liu, Varun Madhavan, and Max 
Tegmark, Phys. Rev. E 106, 045307, 2022.

Constant value on 
the manifold

Gradients of invariants must be 
orthogonal – Independence requirement
[Used in AI Poincaré 2.0]

Gradients of invariants must be orthogonal to 
tangent (flow) vectors. [Used in AI Poincaré 2.0]

First invariant similar to the 
Courant-Snyder invariant.

0 at origin



An example solution

The model converges to 
approximately the same solution 
for multiple training runs.
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Does not work uniformly on new data sets!

U1+U2 U1

H I2

Old data: t=-0.238, When?



Conclusion

• AI Poincaré can verify the presence 
of invariants in experimental data.
• The structure of the manifold 

inferred from the data is consistent 
with theory.
• We can reconstruct approximate 

invariant functions from the data, 
but the process doesn’t work on all 
datasets and only qualitative 
agreement can be seen within the 
sampled domain.
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New data: t=-0.238, 10/23/23
𝑛!"" = 1.86 ± 0.23

U1+U2 U1

H I2



Next Steps

• Finish writing proceeding and draft poster.
• Determine which datasets are more amenable to this analysis and 

why?
• Develop statistics and quantitative predictions.
• Generalize the invariant network to multiple DN magnet strengths.
• Consider publication?
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