Treasure Hunting without a Map: First anomaly detection results from CMS

11 14

Oz Amram May 24th, 2024 Fermilab Wine & Cheese

Lots of Questions

Dark Matter?

Oz Amram (Fermilab)

LHC & CMS

LHC Schedule

CMS Data

[fb]

CMS

138 fb⁻¹(13 TeV

- Obreaud

- Theory

CMS Preliminary

ď

(BB) 10² $B(B \rightarrow bH)=0\%$ $B(B \rightarrow bZ)=100\%$ Theory Uncertainty 5 $B/B \rightarrow UU = 000$ - Observed Median Expected Expected 68% Expected CL upper 95% Expected 68% expected 800 10-2 20 300 400 500 600 700 800 900 1000 100 200 10002000 1000 1100 1200 1300 1400 1500 1600 1700 1800 m_z [GeV] 200 Mass [GeV] 2500 3000 3500 4000 450 Mediator mass m_{med} [GeV] March 2024 36* - 138 fb 1 (13 TeV) CMS Preliminary Bulk Radion, kr n = 35 138 fb-1 (13 TeV) 138 fb⁻¹ (13 TeV) - Observer 95% CL upper limits CMS $(1)^{-1}$ CMS Preliminary Deported Bulk Radior - Observed CMS 95% CL upper limits (13 TeV) 10 Median expecte - Observed Preliminar 68% expected Median expected 95% expected 68% expected $V_{eN} V_{\mu N} |_{\Xi}^{2} / (|V_{eN}|^{2})$ 95% expected 10ă 10⁻⁵ Ч 10-\$6 10-7 $B(h \rightarrow 2A) = 1\%$ 2 3 4 5 6 mp [TeV] HAHM, 2µ, 97.6 fb⁻¹ JHEP 05 (2023) 228 10 Dark SUSY, 4µ, 35.9 fb⁻¹ Phys. Lett. B 796 (2019) 131 m. (GeV 10 HAHM, 2µ (scouting), 101 fb⁻¹ JHEP 04 (2022) 062 $pp \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{*}$ June 2023 400 CMS Preliminary 137 fb⁻¹ (13 TeV) Majorana 10 Dark boson mass [GeV] --SUS-21-008, Combination (WZ) ---Expected ---SUS-21-008, Combination (WH) -2106.14246, 21 SS +-31 (222→Tv; z,=0.5) ---Observed -2106.14246, 21 SS +--31 (222→Tv; BF(II)=0.5, z,=0.5) 1200 2 4 6 8 10 12 14 16 18 34.7 fb⁻¹ (13.6 TeV) m_N [GeV] CMS 95% CL exclusion CMS Preliminary 35.9-138 fb⁻¹(13 TeV) CMS Preliminary March 2023 138 fb⁻¹ (13 TeV Majorana JHEP 04 (2022) 087 $WZ \rightarrow cn.1$ WZ → navs PRD 106 (2022) 01200 $WZ \rightarrow h co$ PBD 105 (2022) 032008 -WZ → qq.qq 2210.00043, Acc. by PLB Will as M NR. PBD 105 (2022) 072008 2210.00043, Acc. by PLB Assumes HVT (model B) BR Electron Channel Promot 11 + 2 chaptered 1 Joseph Corporation for Prompt 11 + 1 chaptered conscience constraint of the second se 26 28 Y production — Observed — Expected — Heavy Vector Triplet (Model B) m₂₀=m₂₀ [GeV] m, [GeV] Same-sign 20-jet JHEP CK (2015) 1 138 fb⁻¹ (13 TeV) August 2023 CMS CMS Preliminary 138 fb⁻¹ (13 TeV) March 2024 CMS Bulk KK-Graviton pp→ĝĝĝ→qĝ(X/X;)→qĝ(W+/Z) X; Oct 2023 107 - Observed CMS 137 fb1 (13 TeV) Expected --W-(2: 1704.07781, 0-leg p(⁵⁴), 06 fb² --W-(2: 1808.04722, 0-leg p(⁵⁴)) --W-(2: 2801.13085, s2-leg (same-sign) -- Expected 10^{−2} E 1400 10 Y produc 95% 10-5 Heavy Vector Triplet (Mos Assumes HVT (model B) BR Some entries are stat. departed 10⁻¹ 1 10 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ ct. [mm] m_z [Te 10-1 m_e [GeV] 2 3 4 5 6 m_G[TeV] 3×10⁻¹ 1 Oz Amram (Fermilab) 7

CMS

138 fb⁻¹ (13 TeV)

CMS Preliminary

None so far...

History

VOLUME 86, NUMBER 17

PHYSICAL REVIEW LETTERS

Quasi-Model-Independent Search for New High p_T Physics at D0

We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in $\approx 100 \text{ pb}^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV collected by the D0 experiment during 1992–1996 at the Fermilab Tevatron. We systematically analyze many exclusive final states and demonstrate sensitivity to a variety of models predicting new phenomena at the electroweak scale. No evidence of new high p_T physics is observed.

PHYSICAL REVIEW D 78, 012002 (2008)

Model-independent and quasi-model-independent search for new physics at CDF

"Vista"

Oz Amram (Fermilab)

Classic Strategy

Using CMS MUSiC Search as an example

~1.5k event classes

Oz Amram (Fermilab)

Classic Strategy

Using CMS MUSiC Search as an example

Modern 'Anomaly Detection'

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

- Focus on a single topology at a time
- Entirely data-driven
- Novel ML methods to reduce bkg

arXiv: 2101.08320

Oz Amram (Fermilab)

Modern 'Anomaly Detection'

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics Focus on a single

"No free lunch" → Drop full model independence But "discounts for buying in bulk"! → Cover a large model space in an efficient way

arXiv: 2101.08320

Oz Amram (Fermilab)

Dijet Resonance Anomaly Search

All material from CMS-EXO-22-026

- $A \rightarrow BC$ topology
 - Heavy resonance (A) \rightarrow daughters B and C
 - B & C are boosted \rightarrow contained in a large radius jet
- Look for B & C jets with 'anomalous' substructure

Graphics source

Jet Substructure

Typical jet

- One central axis (prong)
- From primary vertex

Anomalous jets

- Multiple prongs
- Displaced vertices
- ???

Signal Models

Jet

Jet

в

А

р

Picked a set of unexplored models to evaluate performance

B Jet substructure

	1		1 prong	2 prong	3 prong	4 prong	5 prong	6 prong
C Jet	substructure	1 prong	/	Q* → qW m _{Q*} = [2,3,5] TeV m _W = [25,80,170,400] GeV				
		2 prong		$\begin{array}{c} \textbf{X} \rightarrow \textbf{YY'} \\ m_X = [2,3,5] \ \text{TeV} \\ m_Y = [25,80,170,400] \ \text{GeV} \\ m_{Y'} = [25,80,170,400] \ \text{GeV} \end{array}$,	W_{KK} → RW → WWW $m_{WKK} = [2,3,5]$ TeV $m_R = [170,400]$ GeV		
		3 prong			W' → tB' m _{W'} = [2,3,5] TeV m _{B'} = [25,80,170,400] GeV			
		4 prong		Expect		$\label{eq:mx} \begin{array}{l} \textbf{X} \rightarrow \textbf{YH} \rightarrow \textbf{WWWW} \\ m_X = [2,3,5] \ \text{TeV} \\ m_Y = [170,400] \ \text{GeV} \\ m_H = [170,400] \ \text{GeV} \end{array}$		
		5 prong	man	y additional			Z' → T'T' → tZtZ $m_{Z'} = [2,3,5] \text{ TeV}$ $m_{T'} = [400] \text{ GeV}$	
		6 prong	kind	s of signals!				$\mathbf{Y} \rightarrow \mathbf{HH} \rightarrow \mathbf{tttt}$ $m_{Y} = [2,3,5] \text{ TeV}$ $m_{H} = [400] \text{ GeV}$

25

Analysis Overview

Analysis Overview

The Bump Hunt

Without any substructure cuts \rightarrow Signal swamped by QCD background...

The Bump Hunt

Anomaly detection finds hidden resonance!

Increasing Model Dependence

Looking for Outliers

Train 'Autoencoder'

Training Sample from data sideband

Looking for Outliers

Apply Autoencoder Data from signal region • Cut Take difference 1 0 reconstruction loss Oz Amram (Fermilab)

Illustrations: J Gonski, A Kahn

Variational Autoencoder (VAE)

Latent space forced to be Gaussian thru additional term in loss

- Jet represented by up to 100 highest p_T constituents (p_x, p_y, p_z)
- 100x3 matrix compressed to latent space of size 12
- Trained on jets from |Δη| sideband
 - Sampled to match SR kin.

Decorrelate with Mjj

High Mjj events are rarer \rightarrow higher anomaly score

Decorrelate with Mjj

Decorrelate with Mjj

'Quantile Regression' (QR)

VAE Anomaly

Adjust cut to have a constant efficiency vs Mjj

Decorrelate with Mjj

How to identify anomalous jets?

Learn QCD jets → look for outliers

Look for overdensities of signal in data → Learn to tag sig vs bkg

> CWoLa TNT CATHODE

Increasing Model Dependence

Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

Train on two mixed samples

- Train a classifier between signal-rich and backgroundrich mixed samples
 - \rightarrow Learns to tag signal vs. bkg
- Performance changes with amount of signal in training data
 - No signal \rightarrow learn random noise
 - Lots of signal → approach
 'supervised' (optimal) classifier

Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

CWoLa Hunting

- Assume signal is a narrow resonance
- Guess a mass window where it lives
 - Train signal window vs. narrow sidebands using weak supervision
- **Repeat procedure**, scanning over different mass windows
 - (2x6 windows used)
- Need to be careful about correlations with Mjj

Data from Interpolated bkg Data from 0 Dat

CATHODE

Interpolates bkg events into SR to construct sample

[Hallin et al 2109.00546]

Tag N' Train purifies samples by first tagging with AE

Weakly supervised methods train on events from signal region

→ Ensure no network reuses an event for both training and evaluation to prevent overfitting issues

How to identify anomalous jets?

Increasing Model Dependence

Quasi Anomalous Knowledge (QUAK)

- **Hybrid approach** between fully modelindep. and standard search
- Encode a prior on what a potential signal may look like
 - Use an AE trained on a variety of different signal MC's
- Construct 'QUAK space':
 - Loss of signal AE vs bkg AE
- Select events with low sig loss and high bkg loss

Input Features

2 Pronged Signal

3 Pronged Signal

Inclusive analysis (no substructure cuts) sees only "hints"

2 Pronged Signal

3 Pronged Signal

Traditional substructure cuts enhance sensitivity for a specific model, but not others

2 Pronged Signal

3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

2 Pronged Signal

3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

Complementary

- Compute correlation coefficients between different anomaly scores
- Complementary approaches lead to relatively low correlations!

Steps to Unblinding

- No method creates artificial excesses in MC
- Can successfully find anomalies in MC
- Can characterize anomalies if found
- \checkmark Apply to data $|\Delta\eta|$ sideband \rightarrow no excesses

Time to apply to unblind!

One of our most anomalous events! (according to VAE)

High energy constituents anomaly

Mjj = 2.5 TeV Evt: 851591650 Run: 322332 Era : 2018D 2-pronged anomaly

Search Results

No significant excesses from any method

QUAK & CATHODE results similar

Oz Amram (Fermilab)

No significant excesses from any method

QUAK & CATHODE results similar

Oz Amram (Fermilab)

Efficiency & Uncertainties To set a limit on a specific signal model proceed as usual

• Signal MC + anomaly detector \rightarrow efficiency

Efficiency & Uncertainties To set a limit on a specific signal model proceed as usual

- Signal MC + anomaly detector \rightarrow efficiency
- One complication for weakly supervised methods : signal eff depends on signal xsec!
 - Novel methods to calibrate this (requires training lots & lots of NN's), see backup

Efficiency & Uncertainties

What about uncertainties?

Efficiency & Uncertainties

What about uncertainties?

- Anomaly cut just like any other multivariate cut \rightarrow no 'special' uncertainties
- Largest uncertainty is from MC modeling of jet substructure
- Developed new data-driven correction + uncertainty for modeling high prong jets!
 - Per-prong substructure correction using Lund Jet Plane
 - CMS DP-2023/046

Limits

- Compute limits on benchmark from all anomaly methods on variety of signal models
 - Compare against inclusive & traditional model-specific approaches
 - First-ever limits on most of these models!
- Anomaly detection improves limits by ~2-3x!
 - Does not reach sensitivity of dedicated search

Discovery Sensitivity

- 'Discovery focused' performance metric
- "What cross section do I need to get an expected 3σ/5σ excess?"
- Anomaly methods improve sensitivity by ~3-7x!

Whats Next?

Oz Amram (Fermilab)

- Lots more to explore
- But could still be bottlenecked by the trigger!

L1 Trigger Strategies

Oz Amram (Fermilab)

L1 Trigger Strategies

Anomaly Detection at L1

- CMS has developed **two** an anomaly detection triggers
- Based on autoencoder's trained on zero bias data
- Many 'tricks' used to fit onto FPGA and operate at 40 MHz!!

AXOL1TL CMS-DP-2023-079

CICADA CMS-DP-2023-086

Calorimeter

AXOL1TL led by FNAL postdoc Abhijith Gandrakota

Oz Amram (Fermilab)

Anomaly Detection at L1

Thresholds on anomaly score chosen to achieve desired rate

In Action!

Deployed for real data taking in 2024 !

A L1 Anomalous Event

2023 event triggered only by **AXOL1TL**

Very busy, 11 jets + 1 muon

Future Questions

- No universally 'best' anomaly detection method ?
 - Can we combine approaches? Better methods?
- What other generic topologies can we apply anomaly detection to?
- How to analyze events from an anomaly detection trigger?
- How can we be sure our algorithms are **robust**, **safe and interpretable**?

Conclusions

- First usage of anomaly detection in CMS
 - Dijet resonance search with anomalous substructure
- Demonstrated sensitivity to broad range of signals
- New anomaly detection trigger coming online for 2024
- Many new directions to explore!

Excited to keep digging!

Oz Amram (Fermilab)

Dijet Fit

- After anomaly event selection, all methods use a common fitting/statistical framework
- Bump hunt performed on Mjj spectrum with 4 GeV bin size
 - Goodness of fit (χ^2) computed & plots shown on larger 'dijet binning' (bin size ~resolution)
- Background distribution modeled with standard 'dijet function', with 2, 3 or 4 params
 - For each fit, optimal number of params chosen with Fisher's F-test
- Signal shape is a double Crystal-Ball taken from fits to MC
 - For search use $X \rightarrow YY$ shape (relatively generic), interpolated to masses every 100 GeV
 - For limits use specific signal MC

Anomaly Cut

VAE	CWoLa Hunting	TNT	CATHODE	QUAK
Single event selection Search : 10% most anomalous events Limits: 3 categories Top 1%, 1-5%, 5-10%	Selection changes for each SR (12 total) Cut based on sideband eff. Varies from 1% (low Mjj SR's) 5% (high Mjj SR's)	Same as CWoLa Hunting	Selection changes for each SR (12 total) Cut based on Signal region eff. 1% for all SR's	Selection changes for each mass Hypothesis (100 GeV scan) Iteratively select least populated QUAK space bins from SB's until reach specified # of events in SR

Sensitivity

2 Pronged Signal

3 Pronged Signal

For weakly supervised methods, signal efficiency depends on signal cross section

Don't know the shape of the eff. curve a priori!

Calibrate by injecting signal at varying cross sections & check eff.

Weak Supervision Mass Scans

- Weakly supervised methods assume a signal window for training procedure
- Need to **scan** this window to cover full mass range
 - Repeat training procedure for each window
- Two sets of mass bins, A & B
 - **B** shifted half a bin width over wrt to **A**
 - Each with 6 signal regions
 - Require a sideband on either side of every signal region
- 12 total signal regions, different event selection for each one!

Bin Name	Range (GeV)	Signal Masses (GeV)
A0	1350-1650	-
A1	1650-2017	1800, 1900
A2	2017-2465	2200, 2300
A3	2465-3013	2600, 2700, 2800
A4	3013-3682	3200, 3300, 3400, 3500
A5	3682-4500	3900, 4100, 4200, 4300
A6	4500-5500	4800, 4900, 5000, 5100, 5200
A7	5500-8000	-
B0	1492-1824	-
B1	1824-2230	2000, 2100
B2	2230-2725	2400, 2500
B3	2725-3331	2900, 3000, 3100
B4	3331-4071	3600, 3700, 3800
B5	4071-4975	4400, 4500, 4600, 4700
B6	4975-6081	5300, 5400, 5500, 5600, 5700, 5800
B7	6081-8000	<u> </u>

Understanding Anomalies

Compare features of anomalous jets to regular ones

Oz Amram (Fermilab)

Understanding Anomalies

'Ask' the network!

How much does my anomaly score change if I randomly perturb each feature?

Cross Val Part 2

CATHODE

- Learn full multi-dim density
 - P_{bkg}(x | Mjj) from sidebands & **interpolate** into SR
 - 'Normalizing Flow'
- Draw samples to construct bkgrich sample
- Weak supervision btwn data in SR and interpolated bkg samples

Tag N' Train (TNT)

- Similar to CWoLa Hunting, but additional assumption that for signal **both jets are anomalous**
- Enhance purity of mixed samples by first tagging one jet each SR event with an autoencoder

CATHODE & QUAK

5 TeV Limits

More Limits (3 TeV)

Signal Model (3 TeV)	Daughter Masses (GeV)	Method	Exp. (Obs.) Limit (fb)	Improvement wrt Inclusive
Q* ightarrow qW'	25	CWoLa Hunting	61.1 (30.1)	0.3
$Q*\to qW'$	80	CATHODE	50.0 (95.2)	0.4
Q* ightarrow qW'	170	VAE-QR	52.5 (37.5)	0.4
$\mathrm{Q*} ightarrow \mathrm{qW'}$	400	CWoLa Hunting	45.8 (24.3)	0.5
$X \to YY' \to 4q$	25/25	CATHODE	8.0 (9.9)	0.9
$X \to Y Y' \to 4 q$	25/80	CATHODE	7.6 (13.2)	0.9
$X \to Y Y' \to 4 q$	25/170	CATHODE	10.3 (18.4)	0.7
$X \to YY' \to 4q$	25/400	VAE-QR	13.6 (12.5)	0.6
$X \to Y Y' \to 4 q$	80/80	CATHODE	4.2 (8.0)	1.6
$X \to Y Y' \to 4 q$	80/170	CATHODE	5.7 (11.4)	1.2
$X \to YY' \to 4q$	80/400	CATHODE	6.0 (7.3)	1.2
$X \to YY' \to 4q$	170/170	CATHODE	3.7 (6.8)	1.9
$X \to Y Y' \to 4 q$	170/400	VAE-QR	4.4 (4.0)	1.7
$X \to Y Y' \to 4 q$	400/400	VAE-QR	2.1 (1.9)	4.2
$W' \to B't \to bZt$	25	TNT	25.2 (17.4)	1.5
$W' \to B' t \to b Z t$	80	TNT	22.3 (14.6)	1.5
$W' \to B't \to bZt$	170	TNT	12.2 (7.3)	2.1
$W' \to B' t \to b Z t$	400	VAE-QR	15.2 (11.4)	1.8
$W_{KK} ightarrow RW ightarrow 3W$	170	TNT	25.1 (20.1)	1.4
$W_{KK} ightarrow RW ightarrow 3W$	400	CWoLa Hunting	23.8 (25.0)	1.5
$Z' \to T'T' \to tZtZ$	400	QUAK	28.3 (13.9)	2.7
$Y \to HH \to 4t$	400	QUAK	7.7 (3.7)	3.5

Oz Amram (Fermilab)

More Limits (5 TeV)

Signal Model	Daughter Masses (GeV)	Method	Exp. (Obs.) Limit (fb)	Improvement wrt	
(5 TeV)	-		-	Inclusive	
Q* ightarrow qW'	25	QUAK	3.5 (3.1)	0.7	
$\mathrm{Q}* ightarrow \mathrm{q} \mathrm{W}'$	80	QUAK	3.2 (2.8)	0.8	
$\mathrm{Q}* ightarrow \mathrm{q} \mathrm{W}'$	170	QUAK	3.3 (3.6)	0.8	
$\mathrm{Q}* ightarrow \mathrm{q} \mathrm{W}'$	400	QUAK	3.9 (9.9)	0.7	
X ightarrow YY' ightarrow 4q	25/25	QUAK	1.7 (1.6)	0.5	
X ightarrow YY' ightarrow 4q	25/80	QUAK	1.3 (1.3)	0.7	
$X \to Y Y' \to 4 q$	25/170	QUAK	1.1 (1.1)	0.8	
$X \to Y Y' \to 4 q$	25/400	VAE-QR	1.0 (3.4)	0.9	
X ightarrow YY' ightarrow 4q	80/80	TNT	1.1 (1.2)	0.8	
$X \to Y Y' \to 4 q$	80/170	QUAK	0.9 (1.0)	0.9	
X ightarrow YY' ightarrow 4q	80/400	VAE-QR	0.9 (3.0)	0.9	
$X \to Y Y' \to 4 q$	170/170	CATHODE	0.7 (0.7)	1.2	
$X \to Y Y' \to 4 q$	170/400	VAE-QR	0.7 (2.3)	1.2	
X ightarrow YY' ightarrow 4q	400/400	VAE-QR	0.4 (1.1)	2.3	
$W' \to B' t \to b Z t$	25	TNT	4.4 (6.2)	1.3	
$W' \to B' t \to b Z t$	80	TNT	3.9 (5.7)	1.4	
$W' \to B' t \to b Z t$	170	TNT	2.8 (3.5)	1.6	
$W' \to B' t \to b Z t$	400	TNT	2.7 (3.8)	1.6	
$W_{KK} ightarrow RW ightarrow 3W$	170	TNT	6.1 (7.2)	0.8	
$W_{KK} ightarrow RW ightarrow 3W$	400	VAE-QR	5.4 (18.6)	0.9	
$Y \to HH \to 4t$	400	TNT	1.5 (2.3)	2.5	
Oz Amram (Fermilab)					

96

VAE Technical Details

- Latent space size of 12
- Training uses Chamfer loss + Kullback-Leibler divergence of between latent space & Gaussian
- Cross validation with 20 folds used for Quantile Regression
 - Average QR fit of other 19 folds used when selecting events on 20th
- QR fits use dense NN with 5 layers and 30 nodes per layer, output smoothed with 3rd order polynomial
- Three categories used in limit setting
 - Cat1: Most anomalous 1% (>99%)
 - Cat2: Next most anomalous 4% (95-99%)
 - Cat3: Next most anomalous 5% (90-95%)
- In model-indep search, use single category, >90%

TNT Autoencoder

- AE used by TNT algorithm
- Based on 'image' representation of jets, follow approach of (1803.00107)
 - 32x32 pixels, covering η/ϕ from -0.6 to 0.6 around center of jet
 - Normalize sum of pixels to be 1 \rightarrow less p_T dependence
- Trained with same k-folding as weakly supervised methods
- Separate AE trained for each SR using corresponding sidebands

TNT Diagram

QUAK Signal Prior

- Train 6 separate AE's trained on different signal samples
 - Grouped by daughter masses
- Signal AE's
 - **M80-80**: XYY2000_Y80_Yp80
 - **M80-170**: Wkk2000_R170, Wkk3000_R170, Wp2000_B80_T170, Wp3000_B80_T170, XYY2000_Y80_Yp170
 - **M80-400:** Wkk2000_R400, Wkk3000_R400, XYY2000_Y400_Yp80, XYY2000_Y80_Yp400, XYY3000_Y80_Yp400
 - **M170-170**: Wp2000_B170_T170, Wp3000_B170_T170, XYY3000_Y170_Yp170
 - **M170-400**: Wp2000_B400_T170, Wp3000_B400_T170, XYY2000_Y170_Yp400, XYY2000_Y400_Yp170, XYY3000_Y400_Yp170
 - **M400-400:** YHH2000_H400, YHH3000_H400, ZTT2000_Tp400, ZTT3000_Tp400
- Normalize each score so mean 0, std dev 1
- Combine 6 scores into single 'signal-like' score use L5 signed norm

Signal Systematic Uncertainties

- Analysis fully data driven, only systematics come from signal modeling
- Sys. unc. affects signal distribution \rightarrow changes what NN learns in training \rightarrow change in tagging efficiency
 - Need to do a dedicated injection + training to evaluate effect
- Once 'optimal' σ_{inj} found, do injections with different systematics variations and compute change in signal efficiency
 - Don't use event weights in NN training but rather a weighted random of sampling of signal events to produce sample to inject
 - Note that train and evaluate efficiency on shifted sample
- Once have an uncertainty on signal efficiency, rerun fit with it as a nuisance to get final limit

Systematic Filtering

- Before re-training see which systematics realistically could have an effect on the training
 - Make histograms of training features + Mjj and see which systematics have deviations
- Every histogram 10 bins, spanning 1%-99% of distribution (cutting out outliers)
- Compare deviations of systematics as compared to statistical uncertainty of signal injection divided by 5
 - Very conservative threshold
- For systematics that have deviations larger than this threshold \rightarrow retrain
- For others evaluate change in efficiency with nominal (fixed) classifier on shifted samples

Jet Substructure Modeling

Paper for this method on the way!

CMS DP-2023/046

- Dominant uncertainty on anomaly tag from **jet substructure modeling** of signals
- Exotic signals \rightarrow no SM proxies in data to calibrate
- Developed **new** data-driven method to calibrate **high prong jets**!
 - Recluster prongs into separate subjets
 - Correct modeling of each subjet using Lund Jet Plane
- Gives a correction to modeling & uncertainty

Multi-Prong Calibration Technique

CMS DP-2023/046

Key assumption : Each prong originates from a SM quark

- Recluster AK8 jet so each prong in a separate subjet
- Data-driven correction for each **subjet** using the **Lund Jet Plane**
- Correction is 'per-prong' so can extrapolate to higher-prong jets!

Semi-lep. tt

- Extract & test datadriven subjet correction using semi-leptonic tt events
- Derive data/sim. ratio of Lund Jet Plane from boosted W's
- Test calibration on W's and top's

1807.04758

The Lund Jet Plane (LJP)

- A 2D representation of the density of splittings inside the jet
- To construct our **subjet Lund Jet Plane**
 - Recluster AK8 jet into #prongs using exclusive kt algorithm
 - Recluster each subjet using
 Cambridge/Aachen to get splitting history
 - Fill points based on splittings along hardest branch

Derivation of LJP Correction

- Recluster AK8 jets from Wregion into 2 subjets
- Construct LJP's of data and sim. \rightarrow take ratio
 - Done in 6 bins of subjet $p_{\scriptscriptstyle T}$
- Use this ratio to **correct simulated jets**
- For each prong, reweight based on the multiplication of the LJP ratio of prong's splittings

LJP Application to W Jets

Application of **correction** to **W jets** significantly improves data/sim. agreement!

NB: Non-perfect closure b/c bkg processes are not corrected

LJP Application to W Jets

LJP Application to Top Jets

- Recluster top jets into 3 subjets
- Apply data/sim LJP correction derived from W's

NB: Non-perfect closure b/c bkg processes are not corrected

Correction significantly improves agreement!

CMS Reconstruction

LJP Uncertainties

- Stat. and sys. on extraction of data/sim. LJP ratio
- Matching uncertainty on how well the reclustered subjets correspond to the quarks from the hard process
 - Largest unc., grows with # of prongs
 - ~5% for 2-prong → 50% for 6-prong
- Minor uncertainties:
 - Extrapolation of correction in $\textbf{subjet} \ \textbf{p}_{\tau}$
 - Differences in showering of **bottom quarks** and light quarks

LP Correction Factor Comparison

- Use method to calibrate tagging efficiency
- Compare correction factor $(\epsilon_{data} / \epsilon_{sim})$ from std technique and LJP reweighting
 - → Good agreement
- LJP has larger uncertainties b/c more general method
 - BUT enables calibration of high prong jets!

ATLAS CWoLa Hunting

- First anomaly detection analysis
- CWoLa Hunting (perevent instead of per-jet)
- 2D feature space (jet masses)
- Designed limit setting procedure for weak supervision

2005.02983

ATLAS $Y \rightarrow H+X$

- Resonance decaying to Higgs + anomalous jet
- Autoencoder-like network usec to tag X jet
 - (first unsupervised search)

0.24F

ATLAS Lepton + jet resonances

- Look for resonances with at least 1 lepton
- 'Event level' anomaly detection
 - Autoencoder trained on uses 'rapidity mass matrix'

