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Treasure Hunting without a Map:
First anomaly detection results from CMS
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Lots of Questions
Dark Matter?

 Neutrino 
Mass? And many more… 

Hierarchy 
Problem? 

Flavor 
Anomalies? 

Grand 
Unification?

g-2? 

Baryogenesis? 

Matter
Anti-

matter
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LHC & CMS
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LHC Schedule

We are here



Oz Amram (Fermilab) 5

CMS Data

Run-1
Run-2

Run-3
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LHC Answers?

DM graphic from T. Tait
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LHC Answers?

DM graphic from T. Tait

None so far...
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LHC Answers?

DM graphic from T. Tait

Huge amount of 
effort!

Each is ~3 
person-
years of 

work

Approx ~1000 total 
LHC searches
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None so far...

LHC Answers?

>

DM graphic from T. Tait

Huge amount of 
effort!

But...
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None so far...

LHC Answers?

>

DM graphic from T. Tait

Huge amount of 
effort!

But...

Lets make sure we aren’t 
missing anything!
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Treasure Hunting
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History

“Vista”
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Classic Strategy
Using CMS MUSiC Search as an example

Categorize

~1.5k event classes

Data-MC Comparison

Find Largest Local Deviations

http://2010.02984/
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Classic Strategy

~1.5k event classes

Data-MC Comparison

Look 
elsewhere 

effect

Using CMS MUSiC Search as an example

Categorize

http://2010.02984/
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Modern ‘Anomaly Detection’
● Focus on a single 

topology at a time 
● Entirely data-driven
● Novel ML methods to 

reduce bkg

arXiv: 2101.08320

AI

https://arxiv.org/abs/2101.08320
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Modern ‘Anomaly Detection’
● Focus on a single 

topology at a time 
● Entirely data-driven
● Novel ML methods to 

reduce bkg

arXiv: 2101.08320

AI

The Philosophy
“No free lunch” → Drop full model independence 

But “discounts for buying in bulk”!
→ Cover a large model space in an efficient way 

https://arxiv.org/abs/2101.08320
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Dijet Resonance Anomaly Search

● A→BC topology 
– Heavy resonance (A) → daughters B and C

– B & C are boosted → contained in a large radius jet

● Look for B & C jets with ‘anomalous’ substructure

All material from 
 CMS-EXO-22-026

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-22-026/index.html
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Jet Substructure

Typical jet
● One central axis (prong)
● From primary vertex
● ...

Graphics source

Anomalous jets
● Multiple prongs
● Displaced vertices
● ???

R→WW→ 4q ???

https://arxiv.org/abs/1909.12285
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Signal Models

Expect 
sensitivity to 

many additional 
kinds of signals!

B Jet 
substructure

C
 J

et
 

su
b

st
ru

ct
u

re
Picked a set of unexplored models to 

evaluate performance
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Control region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Signal (s-channel)
QCD (t-channel)

SR CR
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Control region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Bkg: Standard Dijet 
Parameterization
 Signal: Double 

Crystal Ball

Bumps? Limits on signal 
models
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~2σ

Without any substructure cuts → 
Signal swamped by QCD background… 

The Bump Hunt
Background fit with 

standard analytic functions

Double Crystal Ball
 signal shape
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Cut on anomaly 
score

~2σ
>> 7σ 

Anomaly detection
finds hidden resonance!

The Bump Hunt
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Sideband region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Bkg: Standard Dijet 
Parameterization
 Signal: Double 

Crystal Ball

Bumps? Limits on signal 
models (tricky)

The fun part!
5 different approaches
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Increasing Model Dependence 

VAE
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Looking for Outliers

Illustrations: J Gonski, A Kahn

Train ‘Autoencoder’ Training Sample from data sideband
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Looking for Outliers

Illustrations: J Gonski, A Kahn

Data from signal region

Take difference

Cut

Apply Autoencoder
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Variational Autoencoder (VAE)
● Jet represented by up to 

100 highest pT 
constituents (px, py, pz)

● 100x3 matrix compressed 
to latent space of size 12 

● Trained on jets from |Δη| 
sideband
– Sampled to match SR kin.

Latent space forced to be Gaussian 
thru additional term in loss
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Decorrelate with Mjj

High Mjj events are rarer → 
higher anomaly score
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Decorrelate with Mjj

Flat Cut

Bkg sculpted
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Decorrelate with Mjj

‘Quantile Regression’ (QR)

Adjust cut to have a 
constant efficiency vs Mjj
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Decorrelate with Mjj

Cut with 
Flat Eff.

Bkg shape 
retained
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Increasing Model Dependence 

Look for overdensities 
of signal in data

→ Learn to tag sig vs bkg

VAE
CWoLa

TNT
CATHODE
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Weak Supervision
● Train a classifier between 

signal-rich and background-
rich mixed samples

→ Learns to tag signal vs. bkg

● Performance changes with 
amount of signal in training 
data
– No signal → learn random 

noise
– Lots of signal → approach 

‘supervised’ (optimal) classifier

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

https://arxiv.org/abs/1708.02949
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Weak Supervision
● Train a classifier between 

signal-rich and background-
rich mixed samples

→ Learns to tag signal vs. bkg

● Performance changes with 
amount of signal in training 
data
– No signal → learn random 

noise
– Lots of signal → approach 

‘supervised’ (optimal) classifier

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

How can we construct these
 mixed samples in data?

→ 3 different methods employed

https://arxiv.org/abs/1708.02949
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Weak Supervision
● Train a classifier between 

signal-rich and background-
rich mixed samples

→ Learns to tag signal vs. bkg

● Performance changes with 
amount of signal in training 
data
– No signal → learn random 

noise
– Lots of signal → approach 

‘supervised’ (optimal) classifier

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

How can we construct these
 mixed samples in data?

→ 3 different methods employed

All use data from signal 
region for training!

https://arxiv.org/abs/1708.02949


Oz Amram (Fermilab) 43

CWoLa Hunting
● Assume signal is a narrow resonance
● Guess a mass window where it lives

– Train signal window vs. narrow 
sidebands using weak supervision

[Collins, Howe, Nachman 1902.02634]

0 1

● Repeat procedure, scanning 
over different mass windows 
– (2x6 windows used)

● Need to be careful about 
correlations with Mjj

https://arxiv.org/abs/1902.02634
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?

?

Sig-rich
sample

Bkg-rich
sample

Classifier

Tag N’ Train 
purifies samples by 
first tagging with AE

Data from 
SR

Interpolated
bkg

CATHODE
Interpolates bkg events into 

SR to construct sample

[OA & Suarez 2002.12376]

[Hallin et al 2109.00546]

https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2109.00546
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Cross Validation

Weakly supervised methods 
train on events from signal region

→ Ensure no network reuses an event for both 
training and evaluation to prevent overfitting issues
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Cross Validation
1/5th saved 
for search

4/5ths of data used 
for training



47

Cross Validation
Repeat x5 total
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Cross Validation

Selected 
samples 

merged for 
bump hunt

Repeat x5 total

*Weakly supervised methods use additional layer 
of cross val for stability (see backup)
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Look for overdensities 
of signal in data

→ Learn to tag sig vs bkg

Encode a ‘prior’ of 
potential signals →

look for similar

Increasing Model Dependence 

VAE
CWoLa

TNT
CATHODE

VAE QUAK
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Quasi Anomalous Knowledge (QUAK)

● Hybrid approach between fully model-
indep. and standard search

● Encode a prior on what a potential 
signal may look like
– Use an AE trained on a variety of different 

signal MC’s

● Construct ‘QUAK space’: 
– Loss of signal AE vs bkg AE

● Select events with low sig loss and high 
bkg loss 

‘Bkg-like’ Loss

‘S
ig

- l
i k

e
’ 

L o
ss

Hypothetical QUAK 
Space

[Park et al 2011.03550]

https://arxiv.org/abs/2011.03550


Oz Amram (Fermilab) 51

Input Features

VAE

Jet Constituents
p

x
, p

y
, p

z

CWoLa 
Hunting

Jet mass

τ
21

τ
32

τ
43

N
const

Leptonic 
energy frac.

Sub-jets b-tag
score

TNT

Same as 
CWoLa Hunting

CATHODE

Jet masses

τ
41

’s

-------------------
CATHODE-b

+ Subjet b-tag 
scores

QUAK

ρ = jet mass / p
T

τ
21

’s

τ
32

’s

τ
43

’s

N
const

’s

√τ
21

/τ
1

Sub-jets b-tag
scores

Hand-picked high-level featuresLow-level features
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Inclusive analysis (no substructure cuts) sees only “hints”
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Traditional substructure cuts enhance sensitivity for a specific model, but not others
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

Hint

Discovery!

Hint

Discovery!
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Complementary
QCD Bkg.W’→ B’t → bqq bqqX→ YY → qq qq

● Compute correlation coefficients between different anomaly scores
● Complementary approaches lead to relatively low correlations!

CMS-NOTE
-2023-013

https://cds.cern.ch/record/2881089
https://cds.cern.ch/record/2881089
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Steps to Unblinding
✔ No method creates artificial excesses in MC
✔ Can successfully find anomalies in MC
✔ Can characterize anomalies if found 
✔ Apply to data |Δη| sideband → no excesses

Time to apply to unblind!
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One of our most
 anomalous events!

(according to VAE)

Mjj = 2.5 TeV
Evt: 851591650
Run: 322332
Era : 2018D

2-pronged anomaly

High energy 
constituents 

anomaly
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Search Results
No significant excesses from any method

QUAK & CATHODE 
results similar

Results from diff
SR’s shown
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Search Results
No significant excesses from any method

QUAK & CATHODE 
results similar

Ok lets set limits then!
→ Need efficiency & uncertainty on anomaly tag
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Efficiency & Uncertainties
To set a limit on a specific signal model 

proceed as usual

● Signal MC + anomaly detector → efficiency
● One major complication for weakly supervised 

methods : signal eff depends on signal xsec!! 
– Novel methods to calibrate this (requires training lots & 

lots of NN’s), see backup
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Efficiency & Uncertainties
To set a limit on a specific signal model 

proceed as usual

● Signal MC + anomaly detector → efficiency
● One complication for weakly supervised methods : 

signal eff depends on signal xsec! 
– Novel methods to calibrate this (requires training lots & 

lots of NN’s), see backup
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Efficiency & Uncertainties

What about uncertainties?
● Anomaly cut just like any other ML cut → no ‘special’ 

uncertainties
● Largest uncertainty is from MC modeling of jet 

substructure
● Developed new correction + uncertainty for modeling 

high prong jets!
– Data-driven substructure correction using Lund Jet Plane
– CMS DP-2023/046

https://cds.cern.ch/record/2866330?ln=en
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Efficiency & Uncertainties

What about uncertainties?
● Anomaly cut just like any other multivariate cut → no 

‘special’ uncertainties
● Largest uncertainty is from MC modeling of jet 

substructure
● Developed new data-driven correction + uncertainty for 

modeling high prong jets!
– Per-prong substructure correction using Lund Jet Plane
– CMS DP-2023/046

https://cds.cern.ch/record/2866330?ln=en
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Limits
● Compute limits on benchmark from all 

anomaly methods on variety of signal 
models 
– Compare against inclusive & 

traditional model-specific 
approaches

– First-ever limits on most of these 
models!

● Anomaly detection improves limits by 
~2-3x!
– Does not reach sensitivity of 

dedicated search

Very different sig. models!



Oz Amram (Fermilab) 66

Discovery Sensitivity
● ‘Discovery focused’ 

performance metric
● “What cross section do I 

need to get an expected 
3σ/5σ excess?”

● Anomaly methods 
improve sensitivity by 
~3-7x!
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Whats Next?
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Trigger
● Lots more to explore
● But could still be bottlenecked by the trigger!

Add anomaly 
detection to trigger!
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L1 Trigger Strategies
Eg.

Lepton’s with a given p
T

HT, MET, etc.

Eg.
LLP Triggers
VBF Triggers

Etc.
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L1 Trigger Strategies
Eg.

Lepton’s with a given p
T

HT, MET, etc.

Eg.
LLP Triggers
VBF Triggers

Etc.

Best of both ?
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Anomaly Detection at L1
● CMS has developed two an 

anomaly detection triggers

● Based on autoencoder’s trained 
on zero bias data

● Many ‘tricks’ used to fit onto 
FPGA and operate at 40 MHz!!

AXOL1TL CMS-DP-2023-079  
CICADA  CMS-DP-2023-086

AXOL1TL led by 
FNAL postdoc Abhijith 
Gandrakota 

Global Trigger

Calorimeter

https://cds.cern.ch/record/2876546
https://cds.cern.ch/record/2879816?ln=en
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Anomaly Detection at L1

CMS-DP-2023-079  

Thresholds on anomaly score 
chosen to achieve desired 

rate

https://cds.cern.ch/record/2876546
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In Action!

AXOL1TL was deployed 
in CMS trigger test crate 

during 2023 →
rates found to be stable

Deployed for real data taking in 2024 !
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A L1 Anomalous Event

2023 event triggered 
only by AXOL1TL

Very busy, 11 jets + 1 
muon
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Future Questions
● No universally ‘best’ anomaly detection method ? 

– Can we combine approaches? Better methods?

● What other generic topologies can we apply anomaly 
detection to? 

● How to analyze events from an anomaly detection 
trigger? 

● How can we be sure our algorithms are robust, safe and 
interpretable? 
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Conclusions
● First usage of anomaly detection in CMS

– Dijet resonance search with anomalous substructure

● Demonstrated sensitivity to broad range of signals
● New anomaly detection trigger coming online for 

2024
● Many new directions to explore! 

Excited to keep digging!
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Backup
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Dijet Fit
● After anomaly event selection, all methods use a 

common fitting/statistical framework
● Bump hunt performed on Mjj spectrum with 4 GeV 

bin size
– Goodness of fit (χ2) computed & plots shown on larger 

‘dijet binning’ (bin size ~resolution)

● Background distribution modeled with standard ‘dijet 
function’, with 2, 3 or 4 params
– For each fit, optimal number of params chosen with 

Fisher’s F-test

● Signal shape is a double Crystal-Ball taken from fits 
to MC
– For search use X→YY shape (relatively generic), 

interpolated to masses every 100 GeV
– For limits use specific signal MC

Dijet Fn’s
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Anomaly Cut
VAE

Single event 
selection

Search : 
10% most 
anomalous 

events

Limits:
3 categories

Top 1%, 
1-5%, 5-10%

CWoLa 
Hunting

Selection changes
for each SR

(12 total)

Cut based on 
sideband eff.

Varies from 
1% (low Mjj SR’s)
5% (high Mjj SR’s)

TNT

Same as 
CWoLa Hunting

CATHODE

Selection changes
for each SR

(12 total)

Cut based on 
Signal region eff.

1% for all SR’s

QUAK

Selection changes
for each mass
Hypothesis 

(100 GeV scan)

Iteratively select
least populated 

QUAK space bins 
from SB’s until 

reach specified #
 of events in SR
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Sensitivity
2 Pronged Signal 3 Pronged Signal
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Changing Efficiency
For weakly supervised methods, 

signal efficiency depends on signal cross section
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Changing Efficiency
For weakly supervised methods, 

signal efficiency depends on signal cross section

Low signal → 
classifier learns 

random noise → 
low eff.
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Changing Efficiency
For weakly supervised methods, 

signal efficiency depends on signal cross section

Performance 
improving with 

increasing signal
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Changing Efficiency
For weakly supervised methods, 

signal efficiency depends on signal cross section

Performance plateau’s 
when reaches 

‘supervised’ classifier
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Changing Efficiency
For weakly supervised methods, 

signal efficiency depends on signal cross section

Don’t know the shape of 
the eff. curve a priori!

Calibrate by injecting 
signal at varying cross 
sections & check eff.

Evaluating each point 
requires training ~50 NN’s!

Expensive for large scans 
of signal parameters...

Some systematics 
also require 
retraining 
(see backup)
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Limits with Changing Eff.

Limit on # of signal 
events in SR from fit 
(N

exc
)

Find 
N

sig
(σ)= L*σ*ε(σ) 

that matches N
exc

 
→ σ is limit
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Weak Supervision Mass Scans
● Weakly supervised methods 

assume a signal window for 
training procedure

● Need to scan this window to cover 
full mass range
– Repeat training procedure for each 

window

● Two sets of mass bins, A & B 
– B shifted half a bin width over wrt to A 
– Each with 6 signal regions
– Require a sideband on either side of 

every signal region

● 12 total signal regions, different 
event selection for each one!
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Understanding Anomalies
Compare features of anomalous jets to regular ones

Dummy data for 
illustrative purposes
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Understanding Anomalies

How much does my 
anomaly score 

change if I randomly 
perturb each 

feature?

‘Ask’ the network!

Dummy data for 
illustrative purposes
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Cross Val Part 2
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CATHODE
● Learn full multi-dim density 

Pbkg( x | Mjj ) from sidebands & 
interpolate into SR
– ‘Normalizing Flow’

● Draw samples to construct bkg-
rich sample

● Weak supervision btwn data in 
SR and interpolated bkg samples

[Hallin et al 2109.00546]

https://arxiv.org/abs/2109.00546
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Tag N’ Train (TNT)
● Similar to CWoLa Hunting, but additional assumption that for signal 

both jets are anomalous
● Enhance purity of mixed samples by first tagging one jet each SR 

event with an autoencoder

?

?

[OA & Suarez 2002.12376]

Sig-rich
sample

Bkg-rich
sample

Classifier

Same jet p
T
 reweighting 

method to ensure no 
correlation with Mjj

AE is a CNN 
based on jet 

images

(full algo in backup)

https://arxiv.org/abs/2002.12376
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CATHODE & QUAK
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5 TeV Limits
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More Limits (3 TeV)



Oz Amram (Fermilab) 96

More Limits (5 TeV)
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VAE Technical Details
● Latent space size of 12
● Training uses Chamfer loss + Kullback-Leibler divergence of between latent 

space & Gaussian
● Cross validation with 20 folds used for Quantile Regression

– Average QR fit of other 19 folds used when selecting events on 20th

● QR fits use dense NN with 5 layers and 30 nodes per layer, output smoothed 
with 3rd order polynomial

● Three categories used in limit setting
– Cat1: Most anomalous 1% (>99%)
– Cat2: Next most anomalous 4% (95-99%)
– Cat3: Next most anomalous 5% (90-95%)

● In model-indep search, use single category, >90%
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TNT Autoencoder
● AE used by TNT algorithm
● Based on ‘image’ representation of jets, follow approach 

of (1803.00107)
– 32x32 pixels, covering η/φ from -0.6 to 0.6 around center of jet

– Normalize sum of pixels to be 1 → less pT dependence

● Trained with same k-folding as weakly supervised 
methods

● Separate AE trained for each SR using corresponding 
sidebands

https://arxiv.org/abs/1803.00107
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TNT Diagram
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QUAK Signal Prior
● Train 6 separate AE’s trained on different signal samples

– Grouped by daughter masses

● Signal AE’s
– M80-80: XYY2000_Y80_Yp80

– M80-170:  Wkk2000_R170, Wkk3000_R170,Wp2000_B80_T170, Wp3000_B80_T170, XYY2000_Y80_Yp170

– M80-400: Wkk2000_R400, Wkk3000_R400, XYY2000_Y400_Yp80,  XYY2000_Y80_Yp400, XYY3000_Y80_Yp400

– M170-170: Wp2000_B170_T170, Wp3000_B170_T170, XYY3000_Y170_Yp170

– M170-400: Wp2000_B400_T170, Wp3000_B400_T170, XYY2000_Y170_Yp400, XYY2000_Y400_Yp170, XYY3000_Y400_Yp170

– M400-400: YHH2000_H400, YHH3000_H400, ZTT2000_Tp400, ZTT3000_Tp400

● Normalize each score so mean 0, std dev 1
● Combine 6 scores into single ‘signal-like’ score use L5 signed 

norm
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Signal Systematic Uncertainties
● Analysis fully data driven, only systematics come from signal modeling
● Sys. unc. affects signal distribution → changes what NN learns in 

training →  change in tagging efficiency
– Need to do a dedicated injection + training to evaluate effect

● Once ‘optimal’ σinj found, do injections with different systematics 
variations and compute change in signal efficiency
– Don’t use event weights in NN training but rather a weighted random of 

sampling of signal events to produce sample to inject
– Note that train and  evaluate efficiency on shifted sample

● Once have an uncertainty on signal efficiency, rerun fit with it as a 
nuisance to get final limit



  102

Systematic Filtering
● Before re-training see which systematics realistically could have an effect 

on the training
– Make histograms of training features + Mjj and see which systematics have 

deviations

● Every histogram 10 bins, spanning 1%-99% of distribution (cutting out 
outliers)

● Compare deviations of systematics as compared to statistical uncertainty 
of signal injection divided by 5
– Very conservative threshold

● For systematics that have deviations larger than this threshold →  retrain
● For others evaluate change in efficiency with nominal (fixed) classifier on 

shifted samples  
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● Dominant uncertainty on anomaly tag from 
jet substructure modeling of signals 

● Exotic signals →no SM proxies in data to 
calibrate

● Developed new data-driven method to 
calibrate high prong jets!
– Recluster prongs into separate subjets
– Correct modeling of each subjet using Lund Jet 

Plane

● Gives a correction to modeling & 
uncertainty

Lund Jet Plane

CMS DP-2023/046Jet Substructure Modeling
Paper for this method 

on the way!

https://cds.cern.ch/record/2866330?ln=en
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Multi-Prong Calibration Technique
● Recluster AK8 jet so 

each prong in a 
separate subjet

● Data-driven correction 
for each subjet using 
the Lund Jet Plane

● Correction is ‘per-prong’ 
so can extrapolate to 
higher-prong jets!

h

Key assumption : Each prong 
originates from a SM quark

CMS DP-2023/046

https://cds.cern.ch/record/2866330?ln=en
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Semi-lep. tt 
● Extract & test data-

driven subjet correction 
using semi-leptonic tt 
events

● Derive data/sim. ratio 
of Lund Jet Plane from 
boosted W’s

● Test calibration on W’s 
and top’s

W-region

top-region
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The Lund Jet Plane (LJP)
●  A 2D representation of the 

density of splittings inside the jet
● To construct our subjet Lund Jet 
Plane
– Recluster AK8 jet into #prongs 

using exclusive kt algorithm
– Recluster each subjet using 
Cambridge/Aachen to get 
splitting history

– Fill points based on splittings 
along hardest branch

Lund Jet Plane density
recently measured by CMS 

1807.04758 

https://cds.cern.ch/record/2853467?ln=en
https://arxiv.org/abs/1807.04758
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Derivation of LJP Correction
● Recluster AK8 jets from W-

region into 2 subjets
● Construct LJP’s of data and 

sim. → take ratio
– Done in 6 bins of subjet pT

● Use this ratio to correct 
simulated jets

● For each prong, reweight 
based on the multiplication of 
the LJP ratio of prong’s 
splittings
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LJP Application to W Jets

Application of correction to 
W jets significantly improves 

data/sim. agreement!

NB: Non-perfect closure b/c bkg 
processes are not corrected
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LJP Application to W Jets

NB: Non-perfect closure b/c bkg 
processes are not corrected
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LJP Application to Top Jets
● Recluster top jets into 3 subjets
● Apply data/sim LJP correction derived from W’s

NB: Non-perfect 
closure b/c bkg 
processes are not 
corrected

Correction significantly improves agreement!
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CMS Reconstruction
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LJP Uncertainties
● Stat. and sys. on extraction of 

data/sim. LJP ratio 
● Matching uncertainty on how 

well the reclustered subjets 
correspond to the quarks from the 
hard process
– Largest unc., grows with # of prongs 
– ~5% for 2-prong → 50% for 6-prong

● Minor uncertainties: 
– Extrapolation of correction in subjet pT

– Differences in showering of bottom quarks 
and light quarks

Reclustering works 
even for 6 prong jets!
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LP Correction Factor Comparison 
● Use method to calibrate tagging 

efficiency
● Compare correction factor 

(εdata / εsim) from std technique and 
LJP reweighting

→ Good agreement

● LJP has larger uncertainties b/c 
more general method

– BUT enables calibration of high 
prong jets! 
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ATLAS CWoLa Hunting
● First anomaly detection 

analysis
● CWoLa Hunting (per-

event instead of per-jet)
● 2D feature space (jet 

masses)
● Designed limit setting 

procedure for weak 
supervision

2005.02983

Compared to 
previous 

narrow dijet 
searches

https://arxiv.org/abs/2005.02983
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ATLAS Y→ H+X
● Resonance decaying to Higgs 

+ anomalous jet
● Autoencoder-like network used 

to tag X jet 
– (first unsupervised search)

2306.03637

Improvement 
from anomaly 

score a bit 
unclear

https://arxiv.org/abs/2306.03637
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ATLAS Lepton + jet resonances
● Look for resonances with 

at least 1 lepton
● ‘Event level’ anomaly 

detection
– Autoencoder trained on 

uses ‘rapidity mass matrix’ Nice demonstration 
anomaly cut improves 

sensitivity 

2307.01612

https://arxiv.org/abs/2307.01612

