Title

Shyam Bhuller

University of Bristol

April 18, 2024

Introduction

- from this talk, Richie and Jake recommended all analysers to adjust the beam particle selection
- proposal was to adjust fiducial cut from z < 220 cm to 30 < z < 220 cm</p>
- > also change fiducial volume in **truth** to 30 < z < 220
- both observed an improvement in beam selection purity × efficiency
- fiducial volume only applies to the beam particles (final state PFOs outside fiducial volume still considered)
- assess for 2GeV beam pion selection

Current Selection vs New Selection

Description	Criteria		
Beam trigger	pion/muon like beam trigger	Description	Criteria
preselection	(bas calorimetry bas PEOs	z fiducial cut (reco + true)	30 < z _{end} < 220 cm
presetection	track pandora tag)	Beam trigger	pion/muon like beam trigger
z fiducial cut	$z_{end} < 220 \text{ cm}$	preselection	(has calorimetry, has PFOs, track pandora tag)
<i>x,y</i> beam quality	$\delta_{xy} < 3$	<i>x,y</i> beam guality	$\delta_{xy} < 3$
z beam quality	$3 < \delta_Z < 3$	beam direction quality	$\cos(\theta) > 0.95$
beam direction quality	$\cos(\theta) > 0.95$	muon veto	michel score < 0.55
muon veto	michel score < 0.55	proton veto	median <i>dE/dX</i> < 2.4
proton veto	median <i>dE/dX <</i> 2.4	beam scraper veto	$r_{inct} < 1.5$
beam scraper veto	<i>r_{inst}</i> < 1.5		inat a second

$$\delta_{xy} = \sqrt{\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2}, \\ \delta_z = \frac{z-\mu_z}{\sigma_z}, \\ \cos\left(\theta\right) = \hat{n}_x \mu_{\hat{n}_x} + \hat{n}_y \mu_{\hat{n}_y} + \hat{n}_z \mu_{\hat{n}_z} \\ r_{inst} = \sqrt{n_x^2 + n_y^2}; \\ n_x = \frac{X_{inst}^{reco} - \mu_{X_{inst}}}{\sigma_{X_{inst}}}; \\ n_y = \frac{Y_{inst}^{reco} - \mu_{Y_{inst}}}{\sigma_{Y_{inst}}},$$

- New selection updates z fiducial cut and removes z quality cut
- > z quality cut removed since beam z start position is outside fiducial volume
- xy quality and direction quality cuts use truncated start positions (i.e. position when beam is 30cm into the TPC)

Beam particle selection efficiency

purity:	$p = \frac{\text{number of events i selected}}{\text{total number of events selected}}$	(1)
for old selection:	$e = \frac{\text{number of events } i \text{ selected}}{\text{total number of events } i}$	(2)
for new selection:	$e_f = \frac{\text{number of events } i \text{ selected}}{\text{total number of events } i \text{ in fiducial region}}$	(3)

Current Selection performance

	total counts	π^+ :inel counts	π^+ :inel e	π^+ :inel p
noselection	141548	57803	1	0.408
PiBeamSelection	102443	57034	0.987	0.557
PandoraTagCut	89274	56446	0.977	0.632
CaloSizeCut	87403	55699	0.964	0.637
HasFinalStatePFOsCut	84822	54551	0.944	0.643
APA3Cut	68290	49437	0.855	0.724
DxyCut	54513	47307	0.818	0.868
DzCut	49667	44395	0.768	0.894
CosThetaCut	47580	43392	0.751	0.912
MichelScoreCut	47372	43229	0.748	0.913
MedianDEdXCut	45716	42376	0.733	0.927
BeamScraperCut	29247	27629	0.478	0.945

See other sections for plots

New Selection performance

	total counts	π^+ :inel counts	π^+ :inel e	π^+ :inel p
noselection	141548	57803	1	0.408
APA3Cut	74313	40073	0.693	0.539
TrueFiducialCut	56621	35177	0.609	0.621
	total counts	π^+ :inel counts	s π^+ :inel ϵ	$p_f = \pi^+$:inel p
fiducial cuts	56621	35177	1	0.621
PiBeamSelection	38931	31 35020 O.		0.900
PandoraTagCut	38931	35020	35020 0.996	
CaloSizeCut	38931	35020	0.996	0.900
HasFinalStatePFOsCu	t 38112	34342	0.976	0.901
DxyCut	34378	33464	0.951	0.973
CosThetaCut	33071	32492	0.924	0.982
MichelScoreCut 32946		32376	0.920	0.983
MedianDEdXCut	edianDEdXCut 32489		0.913	0.989
BeamScraperCut	20617	20388	0.580	0.989

See other sections for plots

comparing selection performance

selection	counts	р	е	e_f
current	27629	0.945	0.478	-
new	20388	0.989	0.353	0.580

- new selection has better purity
- e decreases by 12.5%, but e_f looks reasonable.
- further reduction in the number of events will increase MC stat error, and favour higher efficiency region identification

Comparing region identification

moderate efficiency selection performs similarly for both selections

Region fit performance

curent beam selection

	μ_{abs}	μ_{cex}	μ_{spip}	μ_{pip}
fit value	0.8	1.O	0.52	1.11
uncertainty	0.2	O.1	0.07	0.05

- μ_{spip} for updated selection is larger
- other fit values are relatively similarly
- reigon fit cross checks TBD

updated beam selection

	μ_{abs}	μ_{cex}	μ_{spip}	μ_{pip}
fit value	0.9	1.1	0.67	1.16
uncertainty	0.3	0.2	0.09	0.06

Modified KEinit

- fiducial volume is not at the start of the TPC, therefore, KE measured at front face is not KE_{init}
- KE_{init} is the Kinetic energy the beam particle has at z = 30 cm
- example of KE at front face, init and int using toy MC.

updated beam selection

updated beam selection

updated beam selection

updated beam selection

- New selection from hadron analysis group implemented in code
- > total selection efficiency drops, but purity and selection efficiency in fiducial region is better
- whole analysis runs, some changes in the kinetic energy calculation were required.

curent beam selection high purity Key: (counts, efficiency(%), purity(%)) pion production (8342) 1219, 15%,28% 6662, 80%,64% 396, 65, 4.7%,19% 0.78%,35% - 0.6 -Counts J single plan production 29, 0.46%,16% 2772, 44%,27% true process 927, 15%,45% 2627, 41%,60% 0.4 0.3 charge exchange 195, 19%,9.5% 91, 8.9%,49% 115, 11%,2.6% 618, 61%,5.9% (1019) - 0.2 <- 0.1 absorption 524, 1, 426, 39%,26% 0.075%,0.54% 32%,9,7% 379, 28%,3.6% 1330) absorption (2042) charge exchange single pion pro reco region

column normalised

updated beam selection

high purity Key: (counts, efficiency(%), purity(%))

updated beam selection

high efficiency Key: (counts, efficiency(%), purity(%))

updated beam selection

moderate efficiency Key: (counts, efficiency(%), purity(%))

updated beam selection

reco region

Current Selection

Beam trigger and preselection

- bar chart shows initial beam composition in MC
- Beam trigger selection only selects beam particles identified by beam PID as pion/muon
- preselection removes events where:
 - beam particle has no reconstructed calorimetry
 - beam particle has no final state PFOs (can't do region identification)
 - beam particle pandora tag is track

End z position cut

- exclude beam interactions past 220 cm
- vetos on muons, avoid regions where the electron diverter effect causes some tracks to end prematurely

Beam quality δ_{xy}

$$\delta_{XY} = \sqrt{\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2}$$

• μ 's and σ 's obtained by fitting gaussians to the beam particle start positions

	μ_X	σ_X	μ_y	σ_{Y}
Data	-27.75 ± 0.02	4.20 ± 0.01	424.69 ± 0.01	4.53 ± 0.01
MC	-30.65 ± 0.02	4.07 ± 0.02	422.29 ± 0.02	3.66 ± 0.02

Beam quality δ_z

$$\succ \delta_Z$$

$$\delta_Z = \frac{Z - \mu_Z}{\sigma_Z}$$

 \triangleright μ 's and σ 's obtained by fitting gaussians to the beam particle start positions

$$\begin{array}{ccc} & & & & & & & \\ \text{Data} & 4.018 \pm 0.004 & & 1.141 \pm 0.003 \\ \text{MC} & 0.109 \pm 0.001 & & 0.2017 \pm 0.0008 \end{array}$$

Beam quality $\cos(\theta)$

 $\triangleright \cos(\theta)$:

 $\cos\left(\theta\right) = \hat{n}_{x}\mu_{\hat{n}_{x}} + \hat{n}_{y}\mu_{\hat{n}_{y}} + \hat{n}_{z}\mu_{\hat{n}_{z}}$

μ's obtained by fitting computing numeric average of n̂.

$$\begin{array}{cccc} \mu_{\hat{n}_{\chi}} & \mu_{\hat{n}_{y}} & \mu_{\hat{n}_{z}} \\ \text{Data} & -0.1410 \pm 0.0005 & -0.1941 \pm 0.0009 & 0.8413 \pm 0.0005 \\ \text{MC} & -0.1605 \pm 0.0008 & -0.159 \pm 0.001 & 0.8629 \pm 0.0008 \end{array}$$

Michel score

Michel score used to veto on muons in 1GeV pion analysis, but muons at 2GeV travel further into the TPC → end z becomes an effective muon veto

Median dE/dX

- veto protons from sample
- TODO adjust plot range

Beam scraper

remove events where P_{inst} not accurate

- this occurs when beam particles travel through some material prior to being measured at the beam spectrometer
- cut on radial distance r_{inst} to exclude particles which enter the TPC off-axis

$$r_{inst} = \sqrt{n_X^2 + n_Y^2};$$

$$n_X = \frac{X_{inst}^{reco} - \mu_{X_{inst}}}{\sigma_{X_{inst}}}; \ n_Y = \frac{Y_{inst}^{reco} - \mu_{Y_{inst}}}{\sigma_{Y_{inst}}}$$

	Remaining events	π^+ :inel	π^+ :decay	μ^+	e^+	р	K^+	other	cosmics
noselection	141548	57803	1461	13163	735	33691	795	19115	14785
PiBeamSelection	102443	57034	1196	12932	540	5403	224	14164	10950
PandoraTagCut	89274	56446	1087	12856	281	5182	213	3181	10028
CaloSizeCut	87403	55699	1035	12772	232	4907	210	2837	9711
HasFinalStatePFOsCut	84822	54551	989	12245	221	4368	202	2667	9579
APA3Cut	68290	49437	862	3328	211	4123	182	2595	7552
DxyCut	54513	47307	360	2583	77	2746	145	1111	184
DzCut	49667	44395	233	2451	23	1811	112	618	24
CosThetaCut	47580	43392	129	2424	12	1177	91	344	11
MichelScoreCut	47372	43229	115	2407	12	1165	90	343	11
MedianDEdXCut	45716	42376	94	2373	4	519	74	267	9
BeamScraperCut	29247	27629	66	1017	4	320	47	158	6

selection tables and performance: efficiency

	Remaining events	π^+ :inel	π^+ :decay	μ^+	e^+	р	<i>K</i> +	other	cosmics
noselection	1	1	1	1	1	1	1	1	1
PiBeamSelection	0.724	0.987	0.819	0.982	0.735	0.160	0.282	0.741	0.741
PandoraTagCut	0.631	0.977	0.744	0.977	0.382	0.154	0.268	0.166	0.678
CaloSizeCut	0.617	0.964	0.708	0.970	0.316	0.146	0.264	0.148	0.657
HasFinalStatePFOsCut	0.599	0.944	0.677	0.930	0.301	0.130	0.254	0.140	0.648
APA3Cut	0.482	0.855	0.590	0.253	0.287	0.122	0.229	0.136	0.511
DxyCut	0.385	0.818	0.246	0.196	0.105	0.082	0.182	0.058	0.012
DzCut	O.351	0.768	0.159	0.186	0.031	0.054	0.141	0.032	0.002
CosThetaCut	0.336	0.751	0.088	0.184	0.016	0.035	0.114	0.018	0.001
MichelScoreCut	0.335	0.748	0.079	0.183	0.016	0.035	O.113	0.018	0.001
MedianDEdXCut	0.323	0.733	0.064	0.180	0.005	0.015	0.093	0.014	0.001
BeamScraperCut	0.207	0.478	0.045	0.077	0.005	0.009	0.059	0.008	0.000

selection tables and performance: purity

	Remaining events	π^+ :inel	π^+ :decay	μ^+	e^+	р	K^+	other	cosmics
noselection	1	0.408	0.010	0.093	0.005	0.238	0.006	0.135	0.104
PiBeamSelection	1	0.557	0.012	0.126	0.005	0.053	0.002	0.138	0.107
PandoraTagCut	1	0.632	0.012	0.144	0.003	0.058	0.002	0.036	0.112
CaloSizeCut	1	0.637	0.012	0.146	0.003	0.056	0.002	0.032	O.111
HasFinalStatePFOsCut	1	0.643	0.012	0.144	0.003	0.051	0.002	0.031	0.113
APA3Cut	1	0.724	0.013	0.049	0.003	0.060	0.003	0.038	O.111
DxyCut	1	0.868	0.007	0.047	0.001	0.050	0.003	0.020	0.003
DzCut	1	0.894	0.005	0.049	0.000	0.036	0.002	0.012	0.000
CosThetaCut	1	0.912	0.003	0.051	0.000	0.025	0.002	0.007	0.000
MichelScoreCut	1	0.913	0.002	0.051	0.000	0.025	0.002	0.007	0.000
MedianDEdXCut	1	0.927	0.002	0.052	0.000	0.011	0.002	0.006	0.000
BeamScraperCut	1	0.945	0.002	0.035	0.000	0.011	0.002	0.005	0.000

New Selection

Fiducial cuts

 only analyse beam interactions which occur within 30 < z < 220 cm in reco and truth

Beam trigger and preselection

- after fiducial cuts, only significant backgrounds are protons and cosmics
- Beam trigger selection only selects beam particles identified by beam PID as pion/muon
- preselection removes events where:
 - beam particle has no reconstructed calorimetry
 - beam particle has no final state PFOs (can't do region identification)
 - beam particle pandora tag is track

Beam quality δ_{xy}

$$\delta_{xy}$$
:

$$\delta_{xy} = \sqrt{\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2}$$

- for this selection x and y are truncated start positions
- μ's and σ's obtained by fitting gaussians to the beam particle truncated start positions
- plot normalisation should be recalculated

	μ_X	σ_X	μ_y	σ_{Y}
Data	-33.01 ± 0.02	4.13 ± 0.02	417.59 ± 0.01	3.83 ± 0.02
MC	-36.91 ± 0.03	3.89 ± 0.04	416.25 ± 0.03	3.64 ± 0.04

Beam quality $\cos(\theta)$

cos (θ):

$$\cos\left(\theta\right) = \hat{n}_{x}\mu_{\hat{n}_{x}} + \hat{n}_{y}\mu_{\hat{n}_{y}} + \hat{n}_{z}\mu_{\hat{n}_{z}}$$

- μ's obtained by fitting computing numeric average of n̂.
- directions calculated using truncated start positions and end positions

$$\begin{array}{cccc} \mu_{\hat{h}_{\chi}} & \mu_{\hat{h}_{y}} & \mu_{\hat{h}_{z}} \\ \text{Data} & -0.1531 \pm 0.0005 & -0.2036 \pm 0.0008 & 0.8912 \pm 0.0005 \\ \text{MC} & -0.1828 \pm 0.0007 & -0.183 \pm 0.001 & 0.9150 \pm 0.0008 \end{array}$$

Michel score

Michel score used to veto on muons in 1GeV pion analysis, but muons at 2GeV travel further into the TPC → end z becomes an effective muon veto

Median dE/dX

- veto protons from sample
- TODO adjust plot range

Beam scraper

remove events where P_{inst} not accurate

- this occurs when beam particles travel through some material prior to being measured at the beam spectrometer
- cut on radial distance r_{inst} to exclude particles which enter the TPC off-axis

$$r_{inst} = \sqrt{n_X^2 + n_Y^2};$$

$$n_X = \frac{X_{inst}^{reco} - \mu_{X_{inst}}}{\sigma_{X_{inst}}}; \ n_Y = \frac{Y_{inst}^{reco} - \mu_{Y_{inst}}}{\sigma_{Y_{inst}}}$$

selection tables and performance: counts

Remaining events		π^+ :inel		π^+ :decay		μ^+		e^+	р	<i>K</i> +	other	cosmics
141548		57803		1461		1316	3	735	33691	795	19115	14785
74313		40073		515		310	9	99	22265	532	1334	6386
	56621		35177		217		5	58	16804	393	442	3364
	Remaining ev	/ents	π^+	inel	$\pi^+:de$	ecay	μ^+	- e-	р	K^+	other	cosmics
	56621		35	5177	21	7	166	5 58	3 16804	1 393	442	3364
PiBeamSelection			35020		18	2	137	7 43	3 706	47	375	2421
PandoraTagCut 38931			350		18	2	137	7 43	3 706	47	375	2421
38931		35		020	18	2	137	7 43	3 706	47	375	2421
lasFinalStatePFOsCut 38112		34		342	17	3 12		3 42	2 654	45	347	2383
DxyCut		34378		3464	10	2	47	16	6 461	40	188	60
CosThetaCut 330			32492		5	7	38	3 7	330	30	106	11
MichelScoreCut 32946			323		56	5	35	5 7	326	30	105	11
32489			32116		54	1	34	I З	164	25	84	9
it 20617			20	388	4	1	24	1 3	99	12	45	5
	Rema DsCut	Remaining events 141548 74313 56621 Remaining events 56621 38931 32946 32946 329489 20617	Remaining events π^+ :in 141548 5780 74313 4007 56621 3517 Remaining events 38931 38931 38931 38931 38931 38931 38931 38931 38931 33071 32946 32489 20617	Remaining events π^+ :inel 141548 57803 74313 40073 56621 35177 Remaining events π^+ 56621 35177 Remaining events π^+ 56621 35177 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 38931 35 32946 32 32946 32 32489 32 20617 20	Remaining events π^+ :inel π^+ :d 141548 57803 14 74313 40073 55 56621 35177 2 Remaining events π^+ :inel π^+ :inel 56621 35177 2 Remaining events π^+ :inel 35020 38931 35020 38931 05020 38931 35020 38931 35020 38931 05020 38931 35020 38931 35020 38931 05020 38931 35020 38931 35020 38931 05020 38931 35020 038931 35020 38931 05020 38931 32492 32946 32376 32492 32946 32376 3216 20617 20388 3216	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	Remaining events		π^+ :inel		π^+ :decay		μ^+		e^+		р		K^+	other	cosmics
noselection	1		1	1		1		1	1		1		1	1	1
APA3Cut	0.525		0.6	393 C		.352	0.2	236	0	.135	0.66	61	0.669	0.070	0.432
TrueFiducialCut	0.400		0.6	;09 (0.149	0.013		О.	079	0.49	99	0.494	0.023	0.228
		Remaining eve	ents	π^+ :i	nel	π^+ :dec	ay	μ^+		e^+		р	K^+	other	cosmics
fiducial		1		1		1		1		1		1	1	1	1
PiBeamSelection		0.688		0.9	96	0.839)	0.82	25	0.74	1 O.(042	0.120	0.848 0	0.720
PandoraTagCut		0.688		0.9	96	0.839)	0.82	25	0.743	1 0.0	042	0.120	0.848	0.720
CaloSizeCut		0.688		0.9	96	0.839)	0.82	25	0.743	1 0.0	042	0.120	0.848	0.720
HasFinalStatePFC	DsCut	0.673		0.9	76	0.811	.	0.74	11	0.724	4 O.(039	O.115	6 0.785	0.708
DxyCut		0.607		0.9	51	0.470)	0.28	33	0.276	5 O.(027	0.102	2 0.425	0.018
CosThetaCut		0.584		0.9	24	0.263	3	0.22	29	0.12	l 0.0)2C	0.076	6 0.240	0.003
MichelScoreCut		0.582		0.97	20	0.258	3	0.21	11	0.12	L O.(019	0.076	6 0.238	0.003
MedianDEdXCut		0.574		0.9	13	0.249)	0.20)5	0.05	2 0.0	010	0.064	4 0.190	0.003
BeamScraperCut		0.364		0.58	80	0.189)	0.14	5	0.05	2 0.0	206	0.03	1 0.102	0.001

	Remaining events		π^+ :ii	nel $ \pi^+$	π^+ :decay		μ^+		9+	р		K^+	other	cosmics
noselection		1	0.40) 8C	0.010	0.0	093	О.	005	0.2	38 (0.006	0.135	0.104
APA3Cut		1	0.53	39 0	0.007	0.0	042	О.	001	0.30	00	0.007	0.018	0.086
TrueFiducialCut	1		0.6	21 (0.004	0.0	003	0.001		0.297		0.007	0.008	0.059
		Remaining ev	ents	π^+ :ine	π^+ :dec	cay	μ^+	-	e^+		р	K^+	other	cosmics
fiducial		1		0.621	0.00	4	0.00	23	0.00	01 C).297	0.007	7 0.008	0.059
PiBeamSelection		1		0.900	0.00	5	0.00	24	0.00	01 C	0.018	0.00	l 0.010	0.062
PandoraTagCut		1		0.900	0.00	5	0.00	04	0.00	01 C	0.018	0.00	l 0.010	0.062
CaloSizeCut		1		0.900	0.00	5	0.00	04	0.00	01 C	0.018	0.00	0.010	0.062
HasFinalStatePF	DsCut	1		0.901	0.00	5	0.00	23	0.00	01 C	0.017	0.00	l 0.009	0.063
DxyCut		1		0.973	0.00	3	0.00	D1	0.00	0 C	0.013	0.00	l 0.005	0.002
CosThetaCut		1		0.982	0.00	2	0.00	D1	0.00	o c	0.010	0.00	L 0.003	0.000
MichelScoreCut		1		0.983	0.00	2	0.00	D1	0.00	o c	0.010	0.00	l 0.003	0.000
MedianDEdXCut		1		0.989	0.00	2	0.00	D1	0.00	0 0	0.005	5 0.00	l 0.003	0.000
BeamScraperCut		1		0.989	0.00	2	0.00	D1	0.00	00	0.005	5 0.00	l 0.002	0.000