HLSFactory

A Framework Empowering
High-level Synthesis
Datasets For Machine
Learning And Beyond

Stefan Abi-Karam'?, Rishov Sarkar', Allison Seigler3, Sean Lowe?*, Zhigang Wei3, Hangiu Chen’,
Nanditha Rao>, Lizy John3, Aman Arora®, Cong Hao'

1Georgia Institute of Technology, ?Georgia Tech Research Institute, 3The University of Texas at Austin
4Arizona State University, °International Institute of Information Technology Bangalore

ML has been widely used in HLS domain, BUT every study has its own dataset

Applications in ¥°1d top_dfg(int* a, int* b, int* c)
HLS Reports C/C++/SystemC) [
| C/C++/SystemC) (Estimates) ~pr int 6 = (v2) I*Sb) ady
High-Level Synthesis (HLS) e o (E) Y (2
- ¥ - Resource usage, ‘ | 9 i Y/ . , emuewen;
[ngh-LeveI Synthe5|s (HLS)] performance’ ‘ neermediateiRepresentaion) (b) An example program
l- ----------------------------- > T|m|ng, | Scheduling & Binding |_________________';
N 3_port 2. 1_port

| HDL p HDL details, etc e i S S
. l 2~ g : ! Fﬁ‘siread nII‘ead |
. N N] [%)

c - - - ! [! = | n17.add /| n12_add
o [Logic Synthesis] Machine : Vl\AA\DO - = A .
= L . i ! Implementation WL Reports ! n18_mul @nla_mul . 4

........................ ' : H eports / \ v
S ¥ ; earning : Logic Synthesis, Technology : CEaiEE (estimating | ol ® N e
QC) : ' Models : . H actual | jr20pdd L, s _add |
= Technology Mapping ' | Mapping, and Place&Route : et resource/ | ‘e o (R graph |
] | i timing
(0] | ! R ! Bitstream i ! !
1 [Place and Route (PAR)] i “~""* Implementation l e e i Technology Mapping | —— !
---------- > = = . odels

E Report (Actual) ; S ERETRELY : i : '
l- ----------------------------- > R \ 00000010 30 01 60 D1 00 OO 00 30 ’ timing and resource | 1
L _ esource usa! le, \\ 00000018 30 01 20 01 00 00 31 ES ’ estimation Actual |) _ :
| Bitstream) Timing, etc. | | | vttt oY e E -: Predicted Resource and Timing [
_________ ===

Accurate Timing and Resource Estimation [FCCM’18, FPL’19, DAC’22]

- HL-Pow Training -~ i e ===
! 7T Testbendt — ! i
| ll Tc/:e»h Feature Construction | HLS Design HLS HLS RTLI L Fl
“_| Directives b N
i 3 stimul Aéqcl}ilgliltti\gn Power Modeling i Testbench Front End o Back End mp ow
[e || emesien | (5 . .
i Synthesis Extraction i Directives
| 4 | IR FSMD Run on Board
| i
| |
| |

RTL Power /
) Measurement/
Implementation Estimation

- HL-Pow Prediction ¢] Power Estimator POWEI’
Inference
Flow

L Activity

High-Level Acquisition
Synthesis Architecture
Extraction

Power Estimation [ASP-DAC’20, DATE’22]
e

Feature Construction l
Power Inference

ML has been widely used in HLS domain:
1.
2.
3.
4.
5.

However, every study has its own dataset

XGB, ANN are used to predict post-implementation resource utilization [FCCM’19]

Pyramid used ANN, SVM to help find design with optimal timing and resource usage [FPL’19]
GNN is used to predict actual resource and timing [DAC’22]

HL-POW used CNN to predict on-board measured average power for each FPGA [ASP-DAC’20]
PowerGear used GNN further increase the accuracy of average power prediction [DATE’22]

Georgia
. Tech.

Existing dataset:

1. Small or homogeneous, contains only a subset of previously published HLS benchmark

2. The designs and intermediate/final tool outputs, which serve as important ML model features, are
often reported organized in non-standard ad hoc ways

3. Challenging for external users to extend the dataset

Therefore, HLSFactory is proposed, and it boasts the following features:

Complete and easily extensible with user inputs at multiple stages
Diverse and comprehensive

Reproducible and user-friendly

ML-ready and multi-purpose

High performance and open-source

A N

Georgia
Tech.

HLSFactory iz T User Entry Point 4 7

User Entry Point 1

"\ |_One HLS Design™ | DSE Confg%
r ..

Stage 0: Design Space Expansion

@0 et Stage 1: Design space
| || expansion and sampling

Design Space Sampling :

[Random sample | [Active learning | .. |

% User Entry Point 2 5
* ‘. [OneHLS Concrete Design L\ *

Lemiseeeen d . Stage 2: Design Synthesis

Stage 9: Design Synthesis

User submitted HLS
Sampled Concrete Designs @ Concrefe Deskans

¢ Pre-implementation results
* Post-implementation results

User Entry Point 3 5
¢ | User provided synth./impl. results |§ Ay

............... Stage @ Data Aggregation Stage 3: Data extraction
-"""-----"----;--I;/l-l--r_-e-a-ci);-d-a;t;s-ét-""-"""":-E an d Agg regano N

* Multi-purpose usage

v Flexible: Can supply user input at any stage
v Extensible: Modular architecture is easy to customize
v Reproducible: Open-source end-to-end build flow

Georgia
. Tech.

Stage 1: Desigh Space Expansion And Sampling

from benchmark

HLSFactory . " UserEntryPoint1 .
¢ OneHLS DeS|gn|5| DSE Conflglﬁ Vendor Agnostic: supports both AMD/Xilinx
and Intel)
Stage o: Design Space Expansion
Existing open-source HLS o User submitted HLS loop_opt, 3,2
designsloenchmarks © L_Abstrpet pesians | e 1

B R L L T T T . 2,lp3,.,unr<.)ll, [12 4 87] 7
OptDSL Frontend (Vendor agnostic) {?iiii:iiiiiiiXE:S?EZﬂnszim/[Limcfi PR
7 9 4 | OptDSL syntax helps to expand designs

AMD/Xilinx scripts'ﬁ Intel scripts'ﬁ Siemens scriptslﬁ

Design Space Sampling Vendor-specific concrete designs

Random sample Active learning

Georgia
. Tech.

Stage 2: Design Synthesis

i User Entry Point 2

l "\ One HLS Concrete Design (\

Stage @: Design Synthesis
User submitted HLS
Concrete Designs

Sampled Concrete Designs @

>
<
o
P
=:
2
<
=
L
—
w
Qo
<
<
)
S}
UV
=]
@
=
+
Qo
9
-
)
-
-
P

e Pre-implementation results
e Post-implementation results

Two steps:
1. HLSSynth: synthesize HLS into RTL
2. HLSImpl: RTL code is implemented

HLSFactory - Overview

Stage 3: Data Extraction and Aggregation

User Entry Point 3

r . | User provided synth./impl. resuits .

e ML-ready dataset
e Multi-purpose usage

v Flexible: Can supply user input at any stage
v Extensible: Modular architecture is easy to customize
v Reproducible: Open-source end-to-end build flow

Georgia
. Tech.

TABLE 1
A comparison of HLSFactory with the existing work. @: feature supported;
O: feature unsupported; ©: feature partially supported.

Contributions DB4HLS | HLSyn | HLSDataset | HLSFactory

Benchmark — Polybench
Benchmark — MachSuite
Benchmark — Rosetta
Benchmark — CHStone
Collection — PP4FPGA
Collection — Accelerators (§V-E)
Post-HLS Latency

Post-HLS Resources

Post-HLS Artifacts

Post-Impl. Data

HLS Optimization DSL
Fine-Grained Parallel Builds
Xilinx HLS Support

Intel HLS Support

User Extendable to Other Tools
Programmable API

Open Source

L Jolole] (] lele] | [eleele] 1@
L 10l0[0] [0)¢[ele] I (eelele] I
L JOI®[O] O] [JOIl JO(@el I I I
00000000000000000

Python API

API Functions

Description

class Design Single HLS design
class Dataset Muluple HLS designs
class Flow (ABC) Abstract class for arbitrary design flow

Flow.execute (design)
Flow.execute_datasets_parallel (design)

Execute a flow on one design
Execute a flow on many designs

class
class

Frontend (Flow)
OptDSLFrontend (Frontend)

Abstract class for frontend design expansion
Opt DSL frontend for Xilinx HLS designs

class
class
class
class

ToolFlow (Flow)

VitisHLSSynthFlow (ToolFlow)
VitisHLSImplFlow (ToolFlow)
VitisHLSImplReportFlow (ToolFlow)

Abstract class for EDA tool
Run Vitis HLS synthesis
Run Vivado implementation (via Vitis HLS)
Run Vivado reporting

Example Use of the APIs

opt_dsl = OptDSLFrontend (WORK_DIR, random_sample=True,
random_sample_num=N_RANDOM_SAMPLES)

hls_synth = VitisHLSSynthFlow ()

hls_impl = VitisHLSImplFlow ()

hls_impl_report = VitisHLSImplReportFlow ()

datasets_post_frontend = opt_dsl.execute_datasets_parallel (
datasets, n_jobs=N_JOBS)

datasets_post_synth = hls_synth.execute_datasets_parallel (
datasets_post_frontend, n_jobs=N_JOBS)

datasets_post_hls_impl = hls_impl.execute_datasets_parallel (
datasets_post_synth, n_jobs=N_JOBS)

Backend iS running in parallel hls_impl_report.execute_datasets_parallel (

datasets_post_hls_impl, n_jobs=N_JOBS)

. source_designs — Set of designs with a common HLSFactory configuration

Lr_ design_a — A single raw HLS design

@ kernel.c — Any HLS design source files needed

\% dataset_hls.tcl — Tcl script invoked by Xilinx tool flow for HLS synthesis

\% dataset_hls_ip_export.tcl — Tcl script invoked by Xilinx tool flow for implementation
EW opt_template.tcl — Tcl script template containing OptDSL syntax

— design_b — A single raw HLS design

. source_designs_xilinx__post_frontend — Designs processed with Xilinx tool flows

Lr design_a_opt_6e433aca — A design point sampled from design_a’s design space

- \% kernel.c

— =) dataset_hls.tcl Design Directory Structure
— ’—% dataset_hls_ip_export.tcl
— \% opt_template.tcl . .
— Lﬂ opt.tcl — Generated from opt_template.tcl with parameters filled in Shows Spec ific entry pOIntS
— hls_prj — Xilinx Vitis HLS project, synthesized and implemented ScCri pts that users add to

— = | data_design.json — General information about design in standardized format integrate into HLSFacto ry

— @ data_hls.json — Statistics from HLS synthesis in standardized format

— ’% data_implementation.json — Post-implementation statistics in standardized format

- \% data_execution.json — Tool runtime statistics in standardized format
— design_a_opt_75b686ac — A design point sampled from design_a’s design space

=7 design_b_opt_158910ad — A design point sampled from design_b’s design space

— design_b_opt 6f2ef3f3 — A design point sampled from design_b’s design space
 source_designs_intel post_frontend — Designs processed with Intel tool flows

Fig. 4. The directory structure that HLSFactory uses. Red are input files; green
are the intermediate design points; blue are output files.

Gr Georgia
. Tech.

Generating more data points
using HLSFactory can resultin
higher prediction accuracy

Xilinx Post-Implementation QoR Prediction

le4d LUTs

8 4 ML (25%): R2=0.70, RAE=0.42
ML (100%): R2=0.95, RAE=0.16
6 HLS: R2=-89.00, RAE=4.08
-
e -~

of o L
X

Predicted Value

-
-
-
3 adki
L
0 T T T
0.0 15 3.0 4.5

True Value
DSP Blocks

led

ML (25%): R2=0.64, RAE=0.61
ML (100%): R2=0.93, RAE=0.14
300 - HLS: R2=1.00, RAE=0.02

”

200 - ° ’,’

o

Predicted Value
Q

100 A o P

§

-

1
k

L] L]
0 100 200
True Value

Predicted Value

Predicted Value

le4 FFs

ML (25%): R2=0.72, RAE=0.39
ML (100%): R2=0.99, RAE=0.07
HLS: R2=-0.03, RAE=0.45
X%~
1

% .
sus® o
oa

0.0 w T T

0 i 2 3 4
True Value led

Worst Negative Slack

ML (25%): R2=0.65, RAE=0.54
10 1 ML (100%): R2=0.76, RAE=0.36

. 4
g '.,:,.35?,‘:'”'

’l

o
o
1

ox
w
1

W
o
1

-
w

’I

_10 = T T L) T
-10 -5 0 5
True Value

Predicted Value

RAMB18s

8

Predicted Value
8

ML (100%): R2=0.75, RAE=0.61

ML (25%): R2=0.06, RAE=1.39
HLS: R2=-109.33, RAE=10.52

o [s]
oL
- -
20 L*", ° ®
0 - :
0 20 40
True Value
Worst Hold Slack
0.08
ML (25%): R2=0.63, RAE=0.77
ML (100%): R2=0.78, RAE=0.52
0.06 -
’4
-
0.04 - ®
-
0.02 - > - B
378
0.00 9 S
-
-
-0.02 —— ' .
-0.02 000 002 0.04
True Value

B ML 25% Design Space @ ML Full Design Space B HLS Reported

Fig. 5. True-vs-predicted plots for the HLS-based ML QoR model. Test values
are shown for models trained on the complete and partial subset of the training
design space. “RAE™: Relative Absolute Error (|g—y|/|y—y|), “R2": Coefficient
of Determination

Average-Case Latency

0.8
Design Space
06 4 " Base Designs (no optimizations)
_..? [Sampled Designs: n=129
2 Sampled Designs: n=257
)
(@)

103 104 10° 10° 10’

Cycles
LUTs DSP BRAM
0.05 I
*90th percentile 0.15 *90th percentile
0.04 '
0.03 0.10
0.02
0.05
0.01
0.00 0.00 , —A
102 103 104 10° 102 103 104 10° 0 50 100 0 20 40 60
Resource Count Resource Count Resource Count Resource Count

Effect of design sampling to cover more design space. Sampled designs cover a wider range of metrics than base
designs with no optimizations. Latency is HLS estimated; resources are post-implementation. Note that these are
stacked density plots to show the effect of cumulative design sampling.

Design Space Visualization: Grouped by Design

I Gsm_LPC_Analysis
© sha_stream

[aes_table

© aes_tableless
B bfs_bulk

© bfs_queue

I bbgemm

" gemm_ncubed

B md

" md_kernel
B ss_sort
[ellpack
[stencil
. stencil3d
I viterbi
I atax

Projection x;

[bicg
gemm
I gesummy
T kZmm
B k3mm
T mvt
[syr2k
T syrk

 J
®]
P]
]
s
2 *
* &
i
R
*
s ® E
® e ¥®

Projection xq

Projection x;

Design Space Visualization: Grouped by Benchmark

B CHStone
BN Polybench

Projection xq

Naive Parallelism

325 I" - Il' II 1 I !

m g 1 || Il 1 I I: III l* lll ! I

q) E : : I 1 I . - . I I 1

| | | | |

Si . R |

2 E 'ii — |' | [- |I 1 - (] 'II' 1 ! | I \ E

U g |'l = : -] II I'l' III 'l : : . | | =—

1: — 1 : : 1 | — | !

Parallel ti f Vitis HLS : : : '
aratiet execution ot Vitls 0 200 400 600 800 1000
synthesis. Top panel shows core _
utilization over time with naive Time (s)

parallelism across datasets; Fine-Grained Parallelism: 23.21% Runtime Speedup

bottom panel shows our fine- 324 ! = - , |
grained design parallelism across y RN e o :
datasets. O : : — :
o E II lllll | p—— | I I
U E l [|I || " — " | |—- | I
2 3 L = | [: — l I
D- E 'I | I'I' | I' II 'll —I l
@) 3 ‘ | W | |——] | :
E | ! | : | —| II I
1: [| 'l) I | | | [I _' I I '
0 200 400 600 800 1000
Time (s)

MachSuite B PolyBench I CHStone 1 HLS Synthesis Timed Out
e

Clock Speed

3 4 === Polybench (Intel)
> MachSuite (Intel)
2,
cC
) I
O -
. 7 ' . /l_/\//l\/\/\l_—\/l\ | | |
102 103
Frequency (MHz)
ALMs Registers DSPs RAMs
Lo I 1.95 - 0.25 - *90th percentile 0.008 4 |\ *90th percentile
IHA N4/ .00 - Il A/ 0.20 — ‘
> 08 7 NSV 100 (1 AV) | 0.006 4
N | 1RIRY | 0.75 - nyY | 0.15 | A
D o6 1IN | | 00044 |
8 0ad | 050 4 | 0.10 4 [|
0.2 - A/\/\-’,\/\ \ 025 4 . 1 0.05 0.002 |
0.0 drrm——rrr——rrr 0.0 -vﬂﬁv—‘l}ﬁ%ﬂ —=rr 0.00 jmetniae o /| 0.000 -
104 10° 104 10° 106 0 20 40 0 200
Resource Count Resource Count Resource Count Resource Count

Average-Case Latency

o6 - i Our Work
2 | mmm HLSyn
2 0.4 -
)
0 62 -
0.0 ——rr —rrr .
102 103 104 10° 10° 107
Latency (Cycles)
LUTs FFs BRAMs DSPs
0.8 1 *90th percentile 7 *90th percentile
n 0.15 0.015
0.6 -
0.4 0.10 0.010
0.2 - 0.05 0.005
0.0 0.00 | 0.000
10,000 10,000 0 50 0 1,000

Resource Count Resource Count Resource Count Resource Count

Comparison of Vitis HLS Metrics Between Versions 2021.1 and 2023.1

HLS Synthesis Runtime Average-Case Latency
L] m
A p-value: 5.8E-5* p-value: 0.087
0.0125 - [[] 0.4 []
0.0100 A
) 1 203 - f
% 0.0075 - : | g . \\
0 000507 1 \ o
N \
000254 | - 0.17 \
0.0000 ll T T — —T— T 0.0 - T B AL e
0 50 100 150 200 250 300 102 10® 10* 10° 10°® 107 108
Tool Runtime (s) Cycles
Resource Usage: LUTs Resource Usage: FFs
. m
0.6 4 [p-value: 0.238] i 06 [p-value: 1.3E-7*] -
i TR
204 204 1
n n I
C C
o) 1
o 0.2 - 0O 0.2 - ::
n
1
0.0 =+ o T oo LB B B B 0.0 LA B R T """I T T T
102 103 104 10° 10° 107 102 103 104 10° 106
Resource Count Resource Count
2021.1 2023.1 —— 2021.1 Mean —— 2023.1 Mean === 2021.1 Median —=- 2023.1 Median

Distribution of HLS tool metrics from two versions of Vitis HLS

Georgia
. Tech.

HLSFactory Key Points:

Complete and easily extensible with user inputs at multiple stages

Diverse and comprehensive

Reproducible and user-friendly

ML-ready and multi-purpose

High performance and open-source (available at https://github.com/sharc-
lab/HLSFactory)

A

Future Direction:

e Simulation Flows, e.g. vendor supported co-simulation or with our own published
tools like LightningSim (which is co-sim accurate and much faster)

* More designs to add from others in the academic community and ope- source

* Developing more frontends and vendor agnostic to abstractions to enumerate more
designs from different design spaces

* Ex: An HLS4ML frontend to enumerate HLS designs from HLS4ML model specs
or from ONNX models

Gr Georgia
. Tech.

‘ H tl S Documentation + Tutorials GitHub Repository

FactoTy sharc-lab.github.io/HLSFactory/docs/ github.com/sharc-lab/hlsfactory

ArXiv Pre-Print Paper
arxiv.org/abs/2405.00820

Thanks!
Questions?

sharc-lab.github.io/HLSFactory/docs
http://github.com/sharc-lab/hlsfactory
http://arxiv.org/abs/2405.00820

References

[1] H. Mohammadi Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M.Pudukotai Dinakarrao, H. Homayoun, and S. Rafatirad, “Pyramid:
Machine learning framework to estimate the optimal timing and resource usage of a high-level synthesis design,” in 2019 29th
International Conference on Field Programmable Logic and Applications (FPL), 2019.

[2] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, “Fast and accurate estimation of quality of results in high-level
synthesis with machine learning,” in 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2018, pp. 129-132.

[3] D. Liu and B. C. Schafer, “Efficient and reliable high-level synthesis design space explorer for fpgas,” in 2016 26th International
Conference on Field Programmable Logic and Applications (FPL), 2016.

[4] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. S Usstrunk, and G. De Micheli, “Deep learning for logic optimization
algorithms,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018.

[5]Y. Luo, C. Tan, N. B. Agostini, A. Li, A. Tumeo, N. Dave, and T. Geng, “Ml-cgra: An integrated compilation framework to enable
efficient machine learning acceleration on cgras,” in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023.

[6] V. A. Chhabria, Y. Zhang, H. Ren, B. Keller, B. Khailany, and S. S. Sapatnekar, “Mavirec: Ml-aided vectored ir-drop estimation and
classification,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021.

[7]R. G. Kim, J. R. Doppa, and P. P. Pande, “Machine learning for design space exploration and optimization of manycore systems,” in
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018, pp. 1-6.

[8] Z. Lin, J. Zhao, S. Sinha, and W. Zhang, “HL-Pow: A Learning-Based Power Modeling Framework for High-Level Synthesis,” in 25th
Asia and South Pacific Design Automation Conference (ASP-DAC), 2020.

[9] G. Singha, D. Diamantopoulosb, J. G dmez-Lunaa, S. Stuijkc, H. Corporaalc, and O. Mutlu, “LEAPER: Fast and Accurate FPGA-based
System Performance Prediction via Transfer Learning,” in IEEE 40th International Conference on Computer Design (ICCD), 2022.
[10]Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, “Powergear: Early-stage power estimation in fpga hls via heterogeneous
edge-centric gnns,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.

