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ML has been widely used in HLS domain, BUT every study has its own dataset
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ML has been widely used in HLS domain:
1.
2.
3.
4.
5.

However, every study has its own dataset

XGB, ANN are used to predict post-implementation resource utilization [FCCM’19]

Pyramid used ANN, SVM to help find design with optimal timing and resource usage [FPL’19]
GNN is used to predict actual resource and timing [DAC’22]

HL-POW used CNN to predict on-board measured average power for each FPGA [ASP-DAC’20]
PowerGear used GNN further increase the accuracy of average power prediction [DATE’22]
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Existing dataset:

1. Small or homogeneous, contains only a subset of previously published HLS benchmark

2. The designs and intermediate/final tool outputs, which serve as important ML model features, are
often reported organized in non-standard ad hoc ways

3. Challenging for external users to extend the dataset

Therefore, HLSFactory is proposed, and it boasts the following features:

Complete and easily extensible with user inputs at multiple stages
Diverse and comprehensive

Reproducible and user-friendly

ML-ready and multi-purpose

High performance and open-source
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* Multi-purpose usage

v Flexible: Can supply user input at any stage
v Extensible: Modular architecture is easy to customize
v Reproducible: Open-source end-to-end build flow
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Stage 1: Desigh Space Expansion And Sampling

from benchmark

HLSFactory . " UserEntryPoint1 .
¢ OneHLS DeS|gn|5| DSE Conflglﬁ Vendor Agnostic: supports both AMD/Xilinx
and Intel)
Stage o: Design Space Expansion
Existing open-source HLS o User submitted HLS loop_opt, 3,2
designsloenchmarks © L_Abstrpet pesians | e 1

B R L L T T T . 2,lp3,.,unr<.)ll, [12 4 87] 7
OptDSL Frontend (Vendor agnostic) {?iiii:iiiiiiiXE:S?EZﬂnszim/[Limcfi PR
7 9 4 | OptDSL syntax helps to expand designs

AMD/Xilinx scripts'ﬁ Intel scripts'ﬁ Siemens scriptslﬁ

Design Space Sampling Vendor-specific concrete designs

Random sample Active learning




Georgia
. Tech.

Stage 2: Design Synthesis

i User Entry Point 2

l "\ One HLS Concrete Design (\

Stage @: Design Synthesis
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e Pre-implementation results
e Post-implementation results

Two steps:
1. HLSSynth: synthesize HLS into RTL
2. HLSImpl: RTL code is implemented



HLSFactory - Overview

Stage 3: Data Extraction and Aggregation

User Entry Point 3

r . | User provided synth./impl. resuits .

e ML-ready dataset
e Multi-purpose usage

v Flexible: Can supply user input at any stage
v Extensible: Modular architecture is easy to customize
v Reproducible: Open-source end-to-end build flow
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TABLE 1
A comparison of HLSFactory with the existing work. @: feature supported;
O: feature unsupported; ©: feature partially supported.

Contributions DB4HLS | HLSyn | HLSDataset | HLSFactory

Benchmark — Polybench
Benchmark — MachSuite
Benchmark — Rosetta
Benchmark — CHStone
Collection — PP4FPGA
Collection — Accelerators (§V-E)
Post-HLS Latency

Post-HLS Resources

Post-HLS Artifacts

Post-Impl. Data

HLS Optimization DSL
Fine-Grained Parallel Builds
Xilinx HLS Support

Intel HLS Support

User Extendable to Other Tools
Programmable API

Open Source
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Python API

API Functions

Description

class Design Single HLS design
class Dataset Muluple HLS designs
class Flow (ABC) Abstract class for arbitrary design flow

Flow.execute (design)
Flow.execute_datasets_parallel (design)

Execute a flow on one design
Execute a flow on many designs

class
class

Frontend (Flow)
OptDSLFrontend (Frontend)

Abstract class for frontend design expansion
Opt DSL frontend for Xilinx HLS designs

class
class
class
class

ToolFlow (Flow)

VitisHLSSynthFlow (ToolFlow)
VitisHLSImplFlow (ToolFlow)
VitisHLSImplReportFlow (ToolFlow)

Abstract class for EDA tool
Run Vitis HLS synthesis
Run Vivado implementation (via Vitis HLS)
Run Vivado reporting

Example Use of the APIs

opt_dsl = OptDSLFrontend (WORK_DIR, random_sample=True,
random_sample_num=N_RANDOM_SAMPLES)

hls_synth = VitisHLSSynthFlow ()

hls_impl = VitisHLSImplFlow ()

hls_impl_report = VitisHLSImplReportFlow ()

datasets_post_frontend = opt_dsl.execute_datasets_parallel (
datasets, n_jobs=N_JOBS)

datasets_post_synth = hls_synth.execute_datasets_parallel (
datasets_post_frontend, n_jobs=N_JOBS)

datasets_post_hls_impl = hls_impl.execute_datasets_parallel (
datasets_post_synth, n_jobs=N_JOBS)

Backend iS running in parallel hls_impl_report.execute_datasets_parallel (

datasets_post_hls_impl, n_jobs=N_JOBS)



. source_designs — Set of designs with a common HLSFactory configuration

Lr_ design_a — A single raw HLS design

@ kernel.c — Any HLS design source files needed

\% dataset_hls.tcl — Tcl script invoked by Xilinx tool flow for HLS synthesis

\% dataset_hls_ip_export.tcl — Tcl script invoked by Xilinx tool flow for implementation
EW opt_template.tcl — Tcl script template containing OptDSL syntax

—  design_b — A single raw HLS design

. source_designs_xilinx__post_frontend — Designs processed with Xilinx tool flows

Lr design_a_opt_6e433aca — A design point sampled from design_a’s design space

- \% kernel.c

— =) dataset_hls.tcl Design Directory Structure
— ’—% dataset_hls_ip_export.tcl
— \% opt_template.tcl . .
— Lﬂ opt.tcl — Generated from opt_template.tcl with parameters filled in Shows Spec ific entry pOIntS
—  hls_prj — Xilinx Vitis HLS project, synthesized and implemented ScCri pts that users add to

— = | data_design.json — General information about design in standardized format integrate into HLSFacto ry

— @ data_hls.json — Statistics from HLS synthesis in standardized format

— ’% data_implementation.json — Post-implementation statistics in standardized format

- \% data_execution.json — Tool runtime statistics in standardized format
—  design_a_opt_75b686ac — A design point sampled from design_a’s design space

=7 design_b_opt_158910ad — A design point sampled from design_b’s design space

— design_b_opt 6f2ef3f3 — A design point sampled from design_b’s design space
 source_designs_intel post_frontend — Designs processed with Intel tool flows

Fig. 4. The directory structure that HLSFactory uses. Red are input files; green
are the intermediate design points; blue are output files.
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Generating more data points
using HLSFactory can resultin
higher prediction accuracy

Xilinx Post-Implementation QoR Prediction
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Fig. 5. True-vs-predicted plots for the HLS-based ML QoR model. Test values
are shown for models trained on the complete and partial subset of the training
design space. “RAE™: Relative Absolute Error (|g—y|/|y—y|), “R2": Coefficient
of Determination




Average-Case Latency
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stacked density plots to show the effect of cumulative design sampling.




Design Space Visualization: Grouped by Design
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Projection x;

Design Space Visualization: Grouped by Benchmark
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Naive Parallelism
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Clock Speed
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Average-Case Latency
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Comparison of Vitis HLS Metrics Between Versions 2021.1 and 2023.1

HLS Synthesis Runtime Average-Case Latency
L] m
A p-value: 5.8E-5* p-value: 0.087
0.0125 - [ [ ] 0.4 [ ]
0.0100 A
) 1 203 - f
% 0.0075 - : | g . \\
0 000507 1 \ o
N \
000254 | - 0.17 \
0.0000 ll T T — —T— T 0.0 - T B AL e
0 50 100 150 200 250 300 102 10® 10* 10° 10°® 107 108
Tool Runtime (s) Cycles
Resource Usage: LUTs Resource Usage: FFs
. m
0.6 4 [p-value: 0.238] i 06 [p-value: 1.3E-7*] -
i TR
204 204 1
n n I
C C
o ) 1
o 0.2 - 0O 0.2 - ::
n
1
0.0 =+ o T oo LB B B B 0.0 LA B R T """I T T T
102 103 104 10° 10° 107 102 103 104 10° 106
Resource Count Resource Count
2021.1 2023.1 —— 2021.1 Mean —— 2023.1 Mean === 2021.1 Median —=- 2023.1 Median

Distribution of HLS tool metrics from two versions of Vitis HLS



Georgia
. Tech.

HLSFactory Key Points:

Complete and easily extensible with user inputs at multiple stages

Diverse and comprehensive

Reproducible and user-friendly

ML-ready and multi-purpose

High performance and open-source (available at https://github.com/sharc-
lab/HLSFactory)

A

Future Direction:

e Simulation Flows, e.g. vendor supported co-simulation or with our own published
tools like LightningSim (which is co-sim accurate and much faster)

* More designs to add from others in the academic community and ope- source

* Developing more frontends and vendor agnostic to abstractions to enumerate more
designs from different design spaces

* Ex: An HLS4ML frontend to enumerate HLS designs from HLS4ML model specs
or from ONNX models
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‘ H tl S Documentation + Tutorials GitHub Repository

FactoTy sharc-lab.github.io/HLSFactory/docs/ github.com/sharc-lab/hlsfactory

ArXiv Pre-Print Paper
arxiv.org/abs/2405.00820

Thanks!
Questions?



sharc-lab.github.io/HLSFactory/docs
http://github.com/sharc-lab/hlsfactory
http://arxiv.org/abs/2405.00820
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