

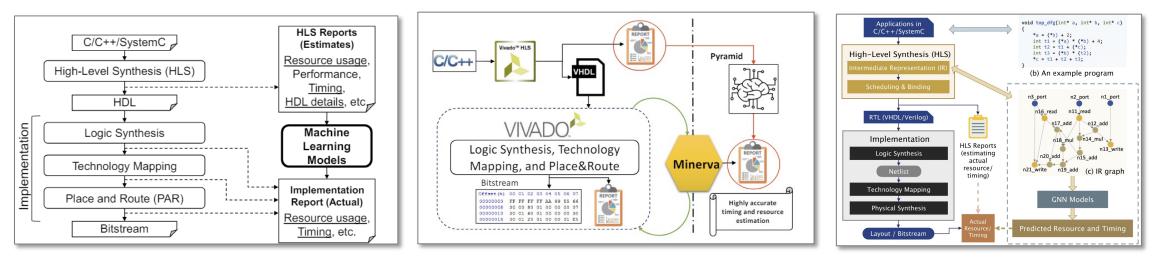
HLSFactory A Framework Empowering High-level Synthesis Datasets For Machine Learning And Beyond

Stefan Abi-Karam^{1,2}, Rishov Sarkar¹, Allison Seigler³, Sean Lowe⁴, Zhigang Wei³, Hanqiu Chen¹, Nanditha Rao⁵, <u>Lizy John³</u>, Aman Arora⁴, Cong Hao¹

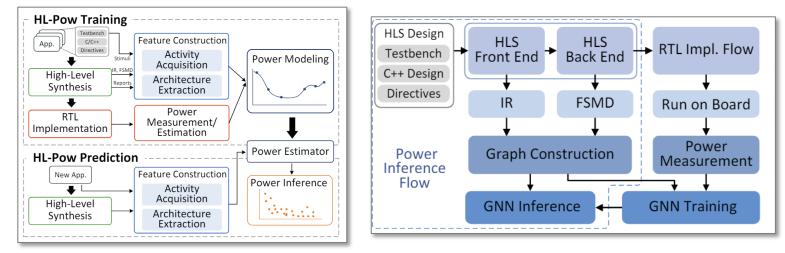
¹Georgia Institute of Technology, ²Georgia Tech Research Institute, ³The University of Texas at Austin ⁴Arizona State University, ⁵International Institute of Information Technology Bangalore

Background

ML has been widely used in HLS domain, BUT every study has its own dataset



Accurate Timing and Resource Estimation [FCCM'18, FPL'19, DAC'22]



Power Estimation [ASP-DAC'20, DATE'22]

Background

ML has been widely used in HLS domain:

- 1. XGB, ANN are used to predict post-implementation resource utilization [FCCM'19]
- 2. Pyramid used ANN, SVM to help find design with optimal timing and resource usage [FPL'19]
- 3. GNN is used to predict actual resource and timing [DAC'22]
- 4. HL-POW used CNN to predict on-board measured average power for each FPGA [ASP-DAC'20]
- 5. PowerGear used GNN further increase the accuracy of average power prediction [DATE'22]

However, every study has its own dataset

Background

Existing dataset:

- 1. Small or homogeneous, contains only a subset of previously published HLS benchmark
- 2. The designs and intermediate/final tool outputs, which serve as important ML model features, are often reported organized in non-standard ad hoc ways
- 3. Challenging for external users to extend the dataset

Therefore, HLSFactory is proposed, and it boasts the following features:

- 1. Complete and easily extensible with user inputs at multiple stages
- 2. Diverse and comprehensive
- 3. Reproducible and user-friendly
- 4. ML-ready and multi-purpose
- 5. High performance and open-source

HLSFactory				
Stage : Design Space Expansion Existing open-source HLS designs/benchmarks User submitted HLS Abstract Designs				
OptDSL Frontend (Vendor agnostic)				
Expanded Design Space (can be extremely huge) Design Space Sampling Random sample Active learning Sampled Concrete Designs (sampling rate adjustable)				
User Entry Point 2 One HLS Concrete Design				
Stage 2: Design Synthesis User submitted HLS Concrete Designs				
AMD/Xilinx Vitis HLS & Vivado Intel i++ & Quartus ··· Pre-implementation results Post-implementation results				
User Entry Point 3				
Stage 3: Data Aggregation AMD/Xilinx Post-processing Intel Post-processing • ML-ready dataset • Multi-purpose usage				
 ✓ Flexible: Can supply user input at any stage ✓ Extensible: Modular architecture is easy to customize ✓ Reproducible: Open-source end-to-end build flow 				

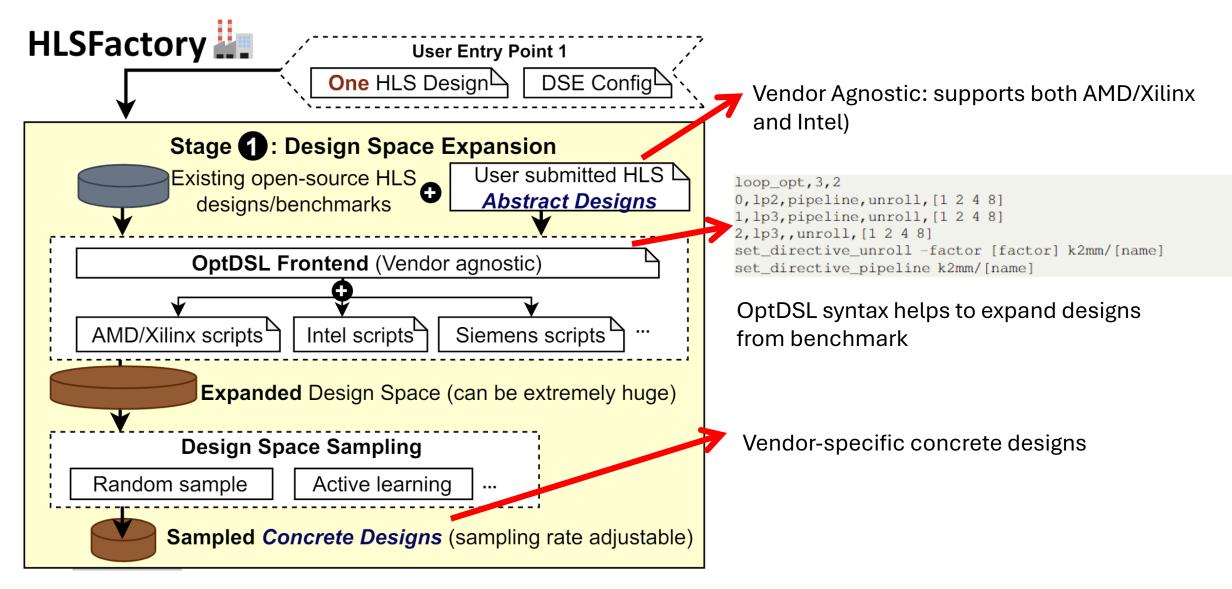
Stage 1: Design space expansion and sampling

eorgia

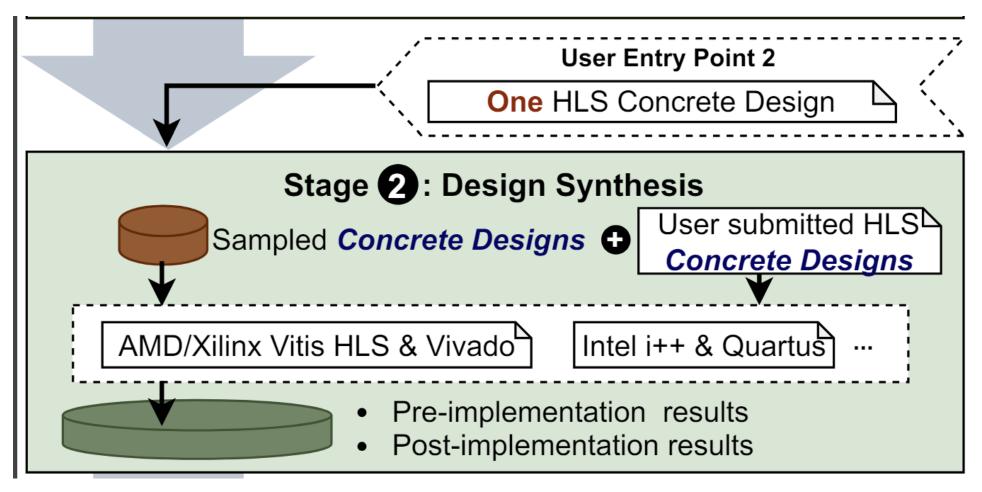
Stage 2: Design Synthesis

Stage 3: Data extraction and Aggregation

Stage 1: Design Space Expansion And Sampling



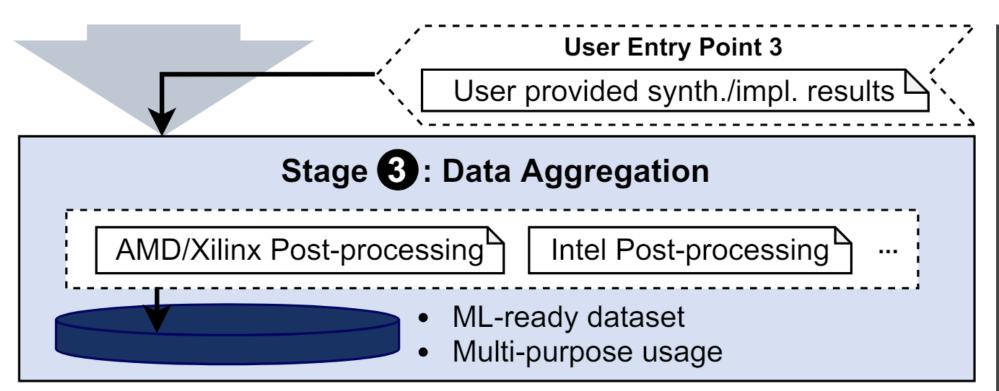
Stage 2: Design Synthesis



Two steps:

- 1. HLSSynth: synthesize HLS into RTL
- 2. HLSImpl: RTL code is implemented

Stage 3: Data Extraction and Aggregation



Flexible: Can supply user input at any stage
 Extensible: Modular architecture is easy to customize
 Reproducible: Open-source end-to-end build flow

 TABLE I

 A comparison of HLSFactory with the existing work.
 •: feature supported;

 O: feature unsupported;
 •: feature partially supported.

Contributions	DB4HLS	HLSyn	HLSDataset	HLSFactory
Benchmark — Polybench	0			
Benchmark — MachSuite				
Benchmark — Rosetta		Q		
Benchmark — CHStone		Q		
Collection — PP4FPGA		Q	Q	
Collection — Accelerators (§V-E)	0	0	0	
Post-HLS Latency				
Post-HLS Resources				•
Post-HLS Artifacts		Q	O O	
Post-Impl. Data	0	\bigcirc	•	
HLS Optimization DSL		O O		
Fine-Grained Parallel Builds		0	0	
Xilinx HLS Support				
Intel HLS Support			0	
User Extendable to Other Tools		0	O	
Programmable API		O	0	
Open Source				

HLSFactory – Implementation & Usage

Python API

API Functions	Description
class Design	Single HLS design
class Dataset	Multiple HLS designs
class Flow(ABC)	Abstract class for arbitrary design flow
Flow.execute(design)	Execute a flow on one design
Flow.execute_datasets_parallel(design)	Execute a flow on many designs
class Frontend(Flow)	Abstract class for frontend design expansion
class OptDSLFrontend(Frontend)	Opt DSL frontend for Xilinx HLS designs
class ToolFlow(Flow)	Abstract class for EDA tool
class VitisHLSSynthFlow(ToolFlow)	Run Vitis HLS synthesis
class VitisHLSImplFlow(ToolFlow)	Run Vivado implementation (via Vitis HLS)
class VitisHLSImplReportFlow(ToolFlow)	Run Vivado reporting

Example Use of the APIs

HLSFactory – Implementation & Usage

Fig. 4. The directory structure that HLSFactory uses. Red are input files; green are the intermediate design points; blue are output files.

Design Directory Structure

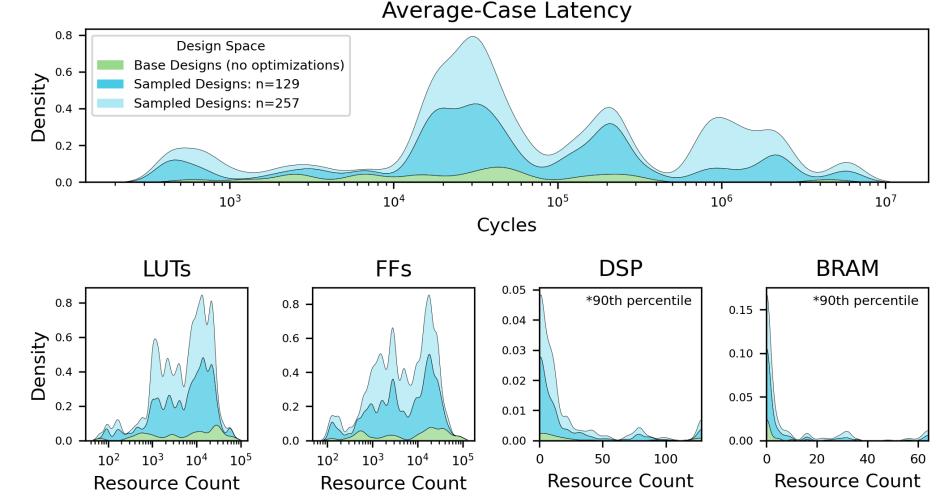
Shows specific entry points scripts that users add to integrate into HLSFactory

LUTs FFs RAMB18s 1e4 le4 80 ML (25%): R2=0.70, RAE=0.42 ML (25%): R2=0.72, RAE=0.39 ML (25%): R2=0.06, RAE=1.39 8 Predicted Value 7.5 7.1 7. Value ML (100%): R2=0.95, RAE=0.16 ML (100%): R2=0.99, RAE=0.07 ML (100%): R2=0.75, RAE=0.61 Predicted Value HLS: R2=-89.00, RAE=4.08 HLS: R2=-0.03, RAE=0.45 HLS: R2=-109.33, RAE=10.52 60 6 Predicted 20 0.0 3.0 4.5 0 20 40 0.0 1.5 True Value 1e4 True Value 1e4 True Value Worst Hold Slack **DSP Blocks** Worst Negative Slack 0.08 ML (25%): R2=0.65, RAE=0.54 ML (25%): R2=0.63, RAE=0.77 ML (25%): R2=0.64, RAE=0.61 10 Value ML (100%): R2=0.93, RAE=0.14 ML (100%): R2=0.76, RAE=0.36 Predicted Value ML (100%): R2=0.78, RAE=0.52 Predicted Value 0.06 300 HLS: R2=1.00, RAE=0.02 0.04 Predicted 200 0.02 100 -5 0.00 -10-0.02200 100 -10-5 0 5 -0.020.00 0.02 0.04 True Value **True Value** True Value ML 25% Design Space ML Full Design Space **HLS Reported**

Xilinx Post-Implementation QoR Prediction

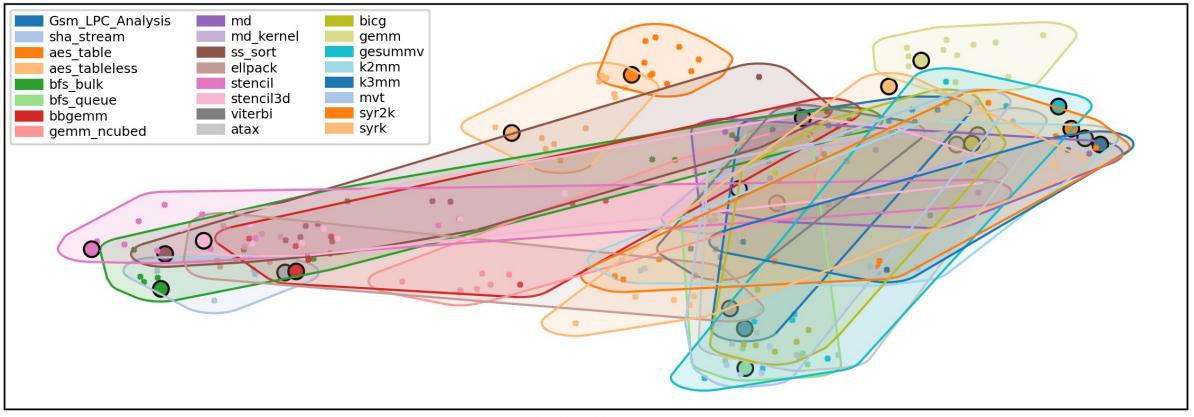
Fig. 5. True-vs-predicted plots for the HLS-based ML QoR model. Test values are shown for models trained on the complete and partial subset of the training design space. "RAE": Relative Absolute Error $(|\hat{y}-y|/|y-\bar{y}|)$, "R2": Coefficient of Determination

Generating more data points using HLSFactory can result in higher prediction accuracy



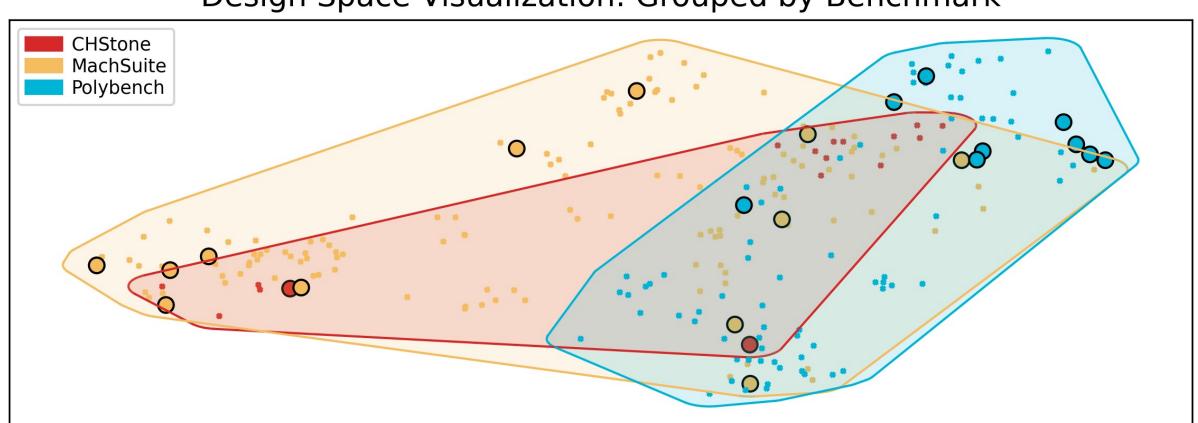
Effect of design sampling to cover more design space. Sampled designs cover a wider range of metrics than base designs with no optimizations. Latency is HLS estimated; resources are post-implementation. Note that these are stacked density plots to show the effect of cumulative design sampling.

Design Space Visualization: Grouped by Design



Projection x_1

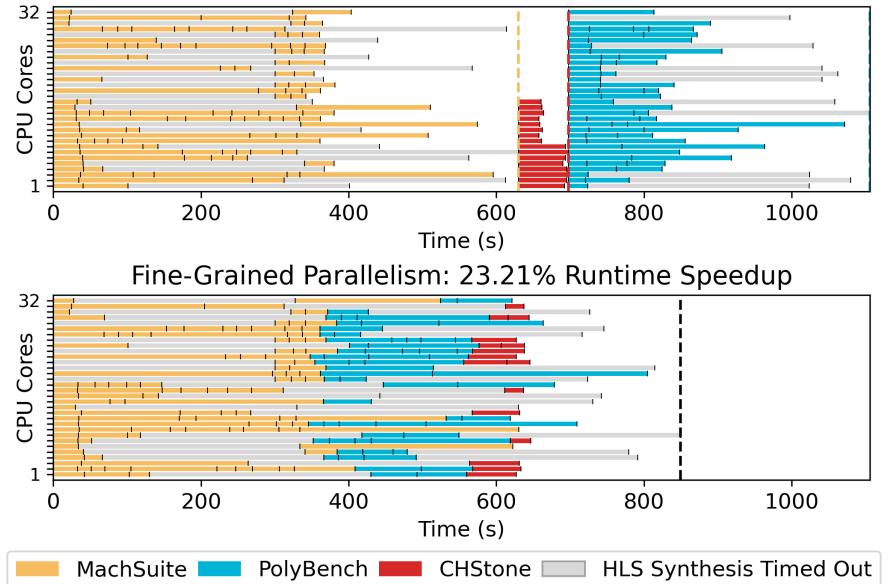
Projection x_0



Projection x_1

Design Space Visualization: Grouped by Benchmark

Projection x_0



Parallel execution of Vitis HLS synthesis. Top panel shows core utilization over time with naive parallelism across datasets; bottom panel shows our finegrained design parallelism across datasets.

Naive Parallelism

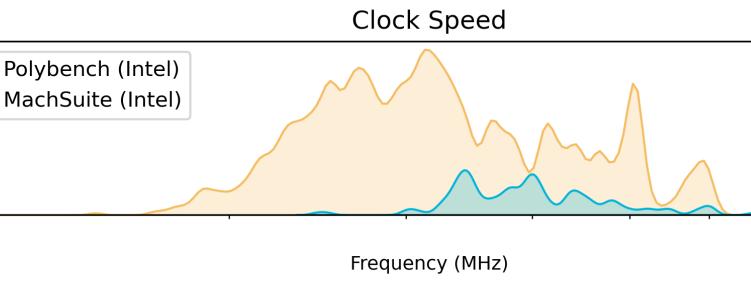
3

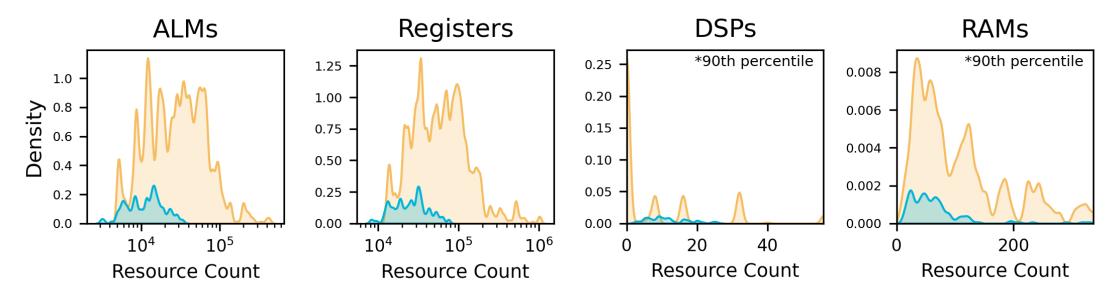
2

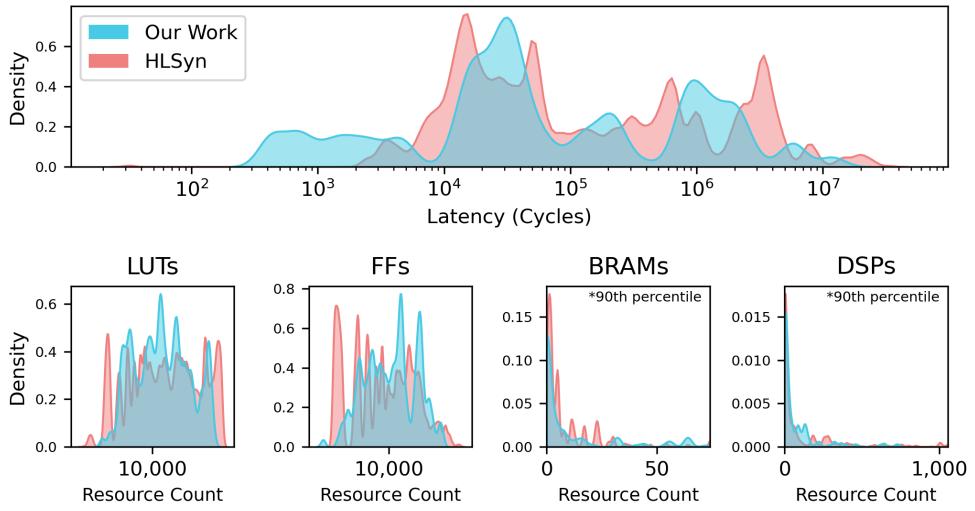
1

Density

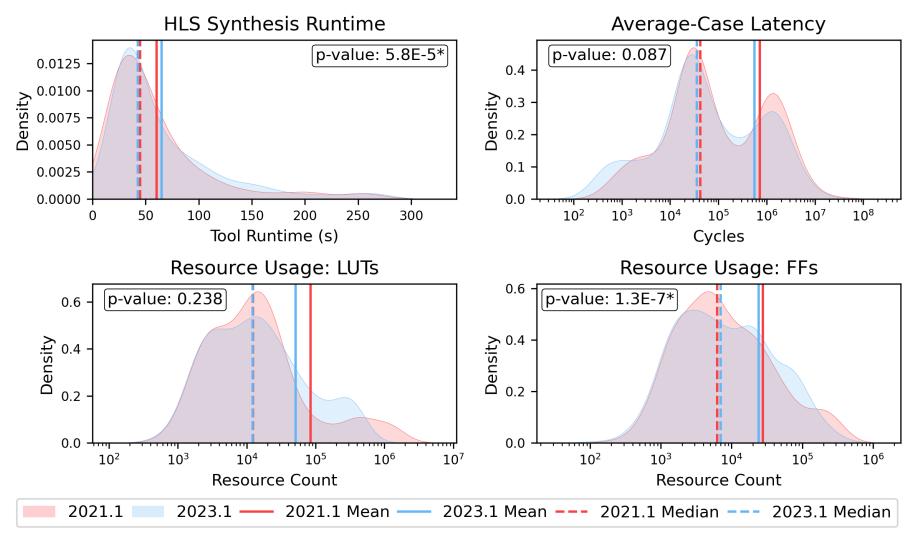
10³







Comparison of Vitis HLS Metrics Between Versions 2021.1 and 2023.1



Distribution of HLS tool metrics from two versions of Vitis HLS

Conclusion

HLSFactory Key Points:

- 1. Complete and easily extensible with user inputs at multiple stages
- 2. Diverse and comprehensive
- 3. Reproducible and user-friendly
- 4. ML-ready and multi-purpose
- 5. High performance and open-source (available at https://github.com/sharclab/HLSFactory)

Future Direction:

- Simulation Flows, e.g. vendor supported co-simulation or with our own published tools like LightningSim (which is co-sim accurate and much faster)
- More designs to add from others in the academic community and ope- source
- Developing more frontends and vendor agnostic to abstractions to enumerate more designs from different design spaces
- Ex: An HLS4ML frontend to enumerate HLS designs from HLS4ML model specs or from ONNX models

Documentation + Tutorials

GitHub Repository

sharc-lab.github.io/HLSFactory/docs/

github.com/sharc-lab/hlsfactory

ArXiv Pre-Print Paper

arxiv.org/abs/2405.00820

Thanks! Questions?

References

[1] H. Mohammadi Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M.Pudukotai Dinakarrao, H. Homayoun, and S. Rafatirad, "Pyramid: Machine learning framework to estimate the optimal timing and resource usage of a high-level synthesis design," in 2019 29th International Conference on Field Programmable Logic and Applications (FPL), 2019.

[2] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang, "Fast and accurate estimation of quality of results in high-level synthesis with machine learning," in 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018, pp. 129–132.

[3] D. Liu and B. C. Schafer, "Efficient and reliable high-level synthesis design space explorer for fpgas," in 2016 26th International Conference on Field Programmable Logic and Applications (FPL), 2016.

[4] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. S üsstrunk, and G. De Micheli, "Deep learning for logic optimization algorithms," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018.

[5] Y. Luo, C. Tan, N. B. Agostini, A. Li, A. Tumeo, N. Dave, and T. Geng, "Ml-cgra: An integrated compilation framework to enable efficient machine learning acceleration on cgras," in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023.

[6] V. A. Chhabria, Y. Zhang, H. Ren, B. Keller, B. Khailany, and S. S. Sapatnekar, "Mavirec: Ml-aided vectored ir-drop estimation and classification," in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021.

[7] R. G. Kim, J. R. Doppa, and P. P. Pande, "Machine learning for design space exploration and optimization of manycore systems," in 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–6.

[8] Z. Lin, J. Zhao, S. Sinha, and W. Zhang, "HL-Pow: A Learning-Based Power Modeling Framework for High-Level Synthesis," in 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020.

[9] G. Singha, D. Diamantopoulosb, J. G ómez-Lunaa, S. Stuijkc, H. Corporaalc, and O. Mutlu, "LEAPER: Fast and Accurate FPGA-based System Performance Prediction via Transfer Learning," in IEEE 40th International Conference on Computer Design (ICCD), 2022.
 [10] Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, "Powergear: Early-stage power estimation in fpga hls via heterogeneous edge-centric gnns," in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.