
HLSFactory
A Framework Empowering 
High-level Synthesis 
Datasets For Machine 
Learning And Beyond
Stefan Abi-Karam1,2, Rishov Sarkar1, Allison Seigler3, Sean Lowe4, Zhigang Wei3, Hanqiu Chen1, 
Nanditha Rao5, Lizy John3, Aman Arora4, Cong Hao1

1Georgia Institute of  Technology, 2Georgia Tech Research Institute, 3The University of Texas at Austin
4Arizona State University, 5International Institute of Information Technology Bangalore



Background
ML has been widely used in HLS domain, BUT every study has its own dataset

Accurate Timing and Resource Estimation [FCCM’18, FPL’19, DAC’22]

Power Estimation [ASP-DAC’20, DATE’22]



Background

ML has been widely used in HLS domain:

1. XGB, ANN are used to predict post-implementation resource utilization [FCCM’19]
2. Pyramid used ANN, SVM to help find design with optimal timing and resource usage [FPL’19]
3. GNN is used to predict actual resource and timing [DAC’22]
4. HL-POW used CNN to predict on-board measured average power for each FPGA [ASP-DAC’20]
5. PowerGear used GNN further increase the accuracy of average power prediction [DATE’22]

However, every study has its own dataset



Background

Existing dataset:
1. Small or homogeneous, contains only a subset of previously published HLS benchmark
2. The designs and intermediate/final tool outputs, which serve as important ML model features, are 

often reported organized in non-standard ad hoc ways
3. Challenging for external users to extend the dataset

Therefore, HLSFactory is proposed, and it boasts the following features:

1. Complete and easily extensible with user inputs at multiple stages
2. Diverse and comprehensive
3. Reproducible and user-friendly
4. ML-ready and multi-purpose
5. High performance and open-source



HLSFactory – Overview

Stage 1: Design space 
expansion and sampling

Stage 2: Design Synthesis

Stage 3: Data extraction 
and Aggregation



Stage 1: Design Space Expansion And Sampling

OptDSL syntax helps to expand designs 
from benchmark

Vendor Agnostic: supports both AMD/Xilinx 
and Intel)

Vendor-specific concrete designs

HLSFactory – Overview



Stage 2: Design Synthesis

Two steps:
1. HLSSynth: synthesize HLS into RTL
2. HLSImpl: RTL code is implemented 

HLSFactory – Overview



Stage 3: Data Extraction and Aggregation

HLSFactory – Overview



HLSFactory – Overview



HLSFactory – Implementation & Usage
Python API

Example Use of the APIs

Backend is running in parallel



Design Directory Structure

Shows specific entry points 
scripts that users add to 
integrate into HLSFactory

HLSFactory – Implementation & Usage



Case Study 1: ML Prediction Of Post-implementation Quality-of-Results (QoR)

Generating more data points 
using HLSFactory can result in 
higher prediction accuracy



Case Study 2: Design Space Coverage

E"ect of design sampling to cover more design space. Sampled designs cover a wider range of metrics than base 
designs with no optimizations. Latency is HLS estimated; resources are post-implementation. Note that these are 
stacked density plots to show the e"ect of cumulative design sampling.



Case Study 2: Design Space Coverage



Case Study 2: Design Space Coverage



Case Study 3: Speedup of Fine-Grained Design Parallelism

Parallel execution of Vitis HLS 
synthesis. Top panel shows core 
utilization over time with naive 
parallelism across datasets; 
bottom panel shows our fine-
grained design parallelism across 
datasets.



Case Study 4: Targeting DiNerent Vendors (Intel)



Case Study 5:Integrating Released Data From Other Works



Case Study 6: Regression Benchmark of HLS Synthesis Tools

Distribution of HLS tool metrics from two versions of Vitis HLS



HLSFactory Key Points:
1. Complete and easily extensible with user inputs at multiple stages
2. Diverse and comprehensive
3. Reproducible and user-friendly
4. ML-ready and multi-purpose
5. High performance and open-source (available at https://github.com/sharc-

lab/HLSFactory)

Future Direction:
• Simulation Flows, e.g. vendor supported co-simulation or with our own published 

tools like LightningSim (which is co-sim accurate and much faster)
• More designs to add from others in the academic community and ope- source
• Developing more frontends and vendor agnostic to abstractions to enumerate more 

designs from different design spaces
• Ex: An HLS4ML frontend to enumerate HLS designs from HLS4ML model specs 

or from ONNX models

Conclusion



Thanks!
Questions?

GitHub RepositoryDocumentation + Tutorials
sharc-lab.github.io/HLSFactory/docs/ github.com/sharc-lab/hlsfactory

arxiv.org/abs/2405.00820

ArXiv Pre-Print Paper

sharc-lab.github.io/HLSFactory/docs
http://github.com/sharc-lab/hlsfactory
http://arxiv.org/abs/2405.00820
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