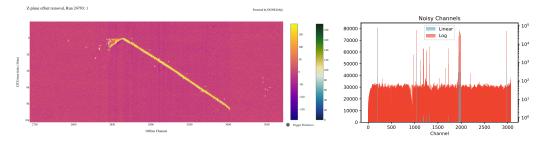
TPG & Triggering with VD Coldbox Apr 2024

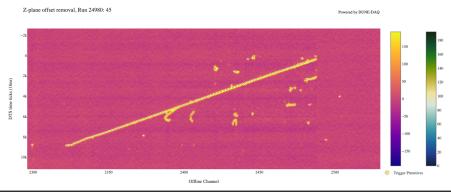
Artur Sztuc a.sztuc@ucl.ac.uk University College London **DEEP UNDERG**

23 Apr 2024

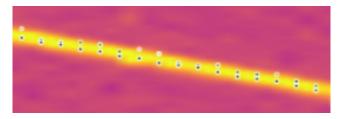

Goals:

- 1. Obtain stable TPG via parameter scans for all three TPG algorithms
 - SimpleThreshold, StandardRS, AbsRS
- 2. Select TPG algorithm most suitable for software triggering
- 3. Test pre-prepared software triggering algorithm configurations
 - HorizontalMuon, DBSCAN, ChannelDistance, ChannelAdjacency
- 4. Find suitable candidates for PD2.
- 5. Collect raw waveforms with long tracks for TPG studies.

We occupied coldbox for five days, and in the end, reached all the goals!


TPG studies

- We started by running all three TPG algorithms with default configs.
 - Ivana was using that data to calculate RMS of noise to set the thresholds.
 - We also used this data to find hot channels there were a few.
- We then started running threshold scans for each of the three algorithms.
 - SimpleThreshold: thresholds as low as 45 were giving good TPs & low noise.
 - StdRS: Initially best for induction, very low TP rates, noisy on Collection.
 - AbsRS: Found it difficult to tune to give low noise with tracks without gaps.
- We also found ghost TPs.


TPG fix

- We had to re-make the hot channel mask every morning.
- $\bullet\,$ Adam spent ${\sim}2$ days with us fixing the TPG ghosts and succeeded.
- After this, we managed to get good TPG configs with all three algorithms.
- StandardRS was giving the lowest TP rates, with nice, unbroken tracks.
 - On all three planes!
 - SmpTh on collection & StdRS on induction could give us better results.
 - Require different thresholds not supported on different planes (yet).

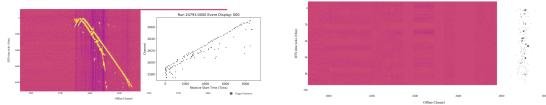
TPG studies summary

- We found stable configurations with all three algorithms.
- SimpleThreshold gave us cleanest tracks on collection, not induction.
- AbsRS was difficult to tune, margins for stable config seemed narrow.
 - It would often give us double TPs: somewhat unavoidable.

- SimpleRS was giving us very clean, unbroken tracks on induction channels.
 - After TPG ghost fix, even the collection plane TPs looked good!
 - This is what we ended up using, without any plane masking.
- Preferable option: StandardRS on induction, SimpleThreshold on induction.
 - Different TPG thresholds/parameters on different planes not supported.

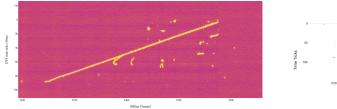
Software triggering: DBSCAN

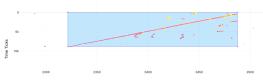
- **≜UCL**
- First tested DBSCAN with config Alex prepared using Nov 2023 VD CB.
- Trigger rates were \sim order magnitude larger, dfo & readout warnings/errors.
- Strangely enough, when replaying with the same data, we get some of these errors, but not with Nov 2023 VD CB!

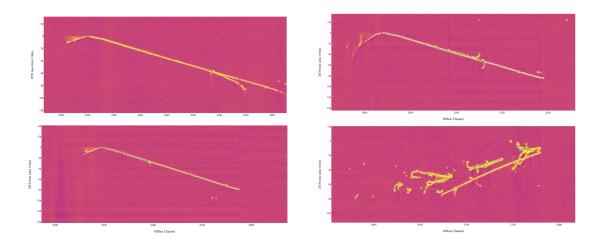

ER	2024-04-09 16:34:43	dataflow0	Unexpected Fragment for triggerID 167-0/24769, type 12, subsystem: Detector_Readout id: 137 41 similar	dfmodules::U	np04-srv-0
WA	2024-04-09 16:34:41	runp02srv002eth0	SourceID[subsystem: Detector_Readout id: 103] Postprocessing has too much backlog, thread: 0 7369709	readoutlibs::P	np02-srv-0
ER	2024-04-09 16:34:12	dataflow0	Unexpected Fragment for triggerID 167-0/24769, type 12, subsystem: Detector_Readout id: 146 217 similar	dfmodules::U	np04-srv-0
WA	2024-04-09 16:34:10	runp02srv002eth0	SourceID[subsystem: Detector_Readout id: 104] Postprocessing has too much backlog, thread: 0 7346224	readoutlibs::P	np02-srv-0
WA	2024-04-09 16:33:55	runp02srv002eth0	fragments_to_dataflow0: Unable to send within timeout period (timeout period was 0 milliseconds)	iomanager::Ti	np02-srv-0
ER	2024-04-09 16:33:55	runp02srv002eth0	Unable to send within timeout period (timeout period was 0 milliseconds)	ipm::SendTim	np02-srv-0
ER	2024-04-09 16:33:41	dataflow0	Unexpected Fragment for triggerID 146-0/24769, type 12, subsystem: Detector_Readout id: 101 231 similar	dfmodules::U	np04-srv-0

- We suspect three issues:
 - This run was before the TP ghost fix.
 - We had a look at the code it's a mess, identified many areas for improvement. We suspect it's very slow.
 - The configuration: found potentially more reasonable configs, but with very different parameters.

≜UCL


- Seemed to run without any errors or warnings, with the config I prepared using November data.
 - This is already AFTER the TP ghost fix.
- It did, however, generate some TRs with empty raw data fragments.
- This happened without any verbose warnings/errors...
- Did the TD request readout window that's already outside the wibframe buffer?


 Algo from Alex, picks TPs based on their channel distance, given a time window. Ran for ~2h, similar to HMA.


- Not many warnings, if any, but there were missing raw data fragments.
- Got worse when we tried to expand the readout window.
 - One one of the goals for TPG was to collect data with long tracks and readout windows for pedestals.
- Alex already identified a possible area for speed improvements in the code.

- Algo from Simranjit, picks TPs based on their channel adjacency, sliding window.
- Seemed to run out of the box. No warnings, no missing fragments.

- We collected data with long readout windows for offline TPG studies.
- One run lasted 3h36min without warnings with ${\sim}5600$ TRs.
- The only caveat is that we did see some missing fragments when running with Random HSI.

Summary

- [≜]UCL
- We found stable TPG configurations and software triggering config.
 - A great future feature: configurable TPG algorithms on different planes.
- Collected a lot of data for the TPG and trigger group with ChannelAdjacency.
 - We had long runs with ChannelDistance too, but with some missing fragments.
- ChannelAdjacency currently our best bet for stable triggering with NP04.
- Not giving up on the rest:
 - Identified areas for speedup on ChannelAdjacency/Distance, DBSCAN.
 - Planning on more thorough latency measurements this/next month.
- All the runs: https://docs.google.com/spreadsheets/d/1RsVAnVUVL_QiMXzWflRapU55t1N6s-OCCMzpPSlhAv0/edit#gid=0
- Summary: https://docs.google.com/document/d/10472PbuAlTdmqjuUAWXHwkauDcq3tmXjWOluV-AtE1c/edit