Constraining Accelerator-based Neutrino Flux: The NA61/SHINE neutrino physics program

CERN Mey

On Behalf of the NA61/SHINE Collaboration

Lu Ren

University of Colorado Boulder

Outline

- Neutrino flux and hadron production uncertainty
- Introduction to NA61/SHINE
- Measurements for T2K
- Measurements for Fermilab experiments
- Current effort
- Future plans

- Neutrinos come from
 - Pions and kaons from primary proton-carbon interactions (p + C)
 - Secondary interactions of protons, pions in the target (hadrons + C/Be)
 - Secondary interactions with horn (hadrons + X)

<u>Leonidas Aliaga, PhD Thesis, 2016</u>

- Neutrino flux simulation relies on the hadronic interaction models used in MC event generators
 - i.e. FLUKA or GEANT4
 - Very large uncertainty (>20%)
- Important to have constraints on the hadronic processes
 - Proton-target interaction
 - Secondary interactions

Introduction to NA61/SHINE

Fermilab Neutrino Seminar April 25th, 2024

• SPS Heavy Ion and Neutrino Experiment

JINST 9 (2014) P06005

Fermilab Neutrino Seminar April 25th, 2024

- **S**PS **H**eavy **I**on and **N**eutrino **E**xperiment
- Beam

- SPS Heavy Ion and Neutrino Experiment
- Beam
 - Primary proton beam from CERN SPS
 - Secondary beam of proton, kaon, pion, etc.

<u>JINST 9 (2014) P06005</u>

- SPS Heavy Ion and Neutrino Experiment
- Beam
 - Primary proton beam from CERN SPS
 - Secondary beam of proton, kaon, pion, etc.
- Physics program
 - Heavy ions
 - Cosmic-ray production
 - Hadron production for neutrino beams

<u>JINST 9 (2014) P06005</u>

- 8 Time Projection Chambers (TPCs)
- Two superconducting magnets
- Time-of-flight detectors

- Projectile Spectator Detectors (PSDs)
- Major detector upgrade finalized in 2022

- Three Forward-TPCs (FTPCs) were built in 2015 2017
- Including in data taking since 2017

Major Upgrade (2019-2022)

- Replacement of old TPC electronics with system from ALICE
- New trigger/DAQ, combined with new electronics, gives a major upgrade in data collection rate (~100 Hz \rightarrow ~1 kHz)
- New silicon vertex detector for open charm studies
- RPC-based replacement for TOF-L/R walls
- New beam position detectors
- New forward Projectile Spectator Detector module, reconfiguration of existing detector

Particle Identification

- Use dE/dx in TPCs for higher momentum
- Transitions to TOF at lower momentum

The Neutrino Program at NA61/SHINE

- Dedicated hadron production measurements for long-baseline oscillation
 neutrino experiments
 - J-PARC, NuMI, LBNF, ...
- Main collaborators
 - Eötvös Loránd University, Budapest, Hungary
 - LPNHE, Sorbonne University, CNRS/IN2P3, Paris, France
 - Okayama University, Japan
 - KEK, Japan
 - University of Notre Dame, Notre Dame, USA
 - University of Colorado, Boulder, USA
 - University of Pittsburgh, Pittsburgh, USA
 - Fermilab, Batavia, USA

Hadron Production Measurements

• Thin-target measurements

- Total, inelastic and production cross sections
- Charged and neutral hadron yields from primary and secondary interactions
- Input to reweight flux simulations
- Replica-target measurements
 - Differential production yield measurements from the surface of the target
 - Beam survival probability
 - Input to reweight flux simulations
 - Input to understand beam attenuation

p, π^{+/-}, K^{+/-} **p**, π^{+/-}, K^{+/-} **K**⁰_s, Λ, Λ

Measurements for the T2K Experiment

Measurements for the T2K Experiment

- 2007 2010
- Proton + carbon @ 31 GeV/c
- Targets
 - Thin: 2 cm graphite target
 - Thick: 90 cm replica graphite target

Thin Target Measurements for T2K

- Thin target: 31 GeV/c proton on 2 cm graphite target
 - Total cross-section and $\pi^{+/-}$ spectra measurements (<u>Phys. Rev. C84 (2011) 034604</u>) 0
 - K⁺ spectra measurement (Phys. Rev. C85 (2012) 035210) Ο
 - Ο
 - K_{s}^{0} and Λ^{0} spectra measurements (<u>Phys. Rev. C89 (2014) 025205</u>) Total cross-section and π^{+/-}, K^{+/-}, p, K_s⁰, and Λ⁰ spectra measurements (<u>Eur. Phys. J. C76</u>) Ο (2016) 84)

Thick Target Measurements for T2K

- Replica target: 31 GeV/c proton on 90 cm replica graphite target
 - Methodology, $\pi^{+/-}$ yield measurement (<u>Nucl. Instrum. Meth. A701 (2013) 99-114</u>)
 - $\pi^{+/-}$ yield measurement (<u>Eur. Phys. J. C76 (2016) 617</u>)
 - $\pi^{+/-}$, p, and K^{+/-} yield measurements (<u>Eur. Phys. J. C79 100 (2019)</u>)
 - p beam survival probability measurement (<u>Phys. Rev. D103 012006 (2021)</u>)

Thick Target Measurements for T2K

• Phase space of the charged hadrons coming from the T2K target surface that contribute to the (anti)neutrino fluxes

Thick Target Measurements for T2K

- Replica target: 31 GeV/c proton on 90 cm replica graphite target
 - \circ $\pi^{+/-}$, p, and K^{+/-} yield measurements (<u>Eur. Phys. J. C79 100 (2019)</u>)

Effect on T2K Flux Uncertainty

- Improved T2K flux uncertainty down to ~5%
- More replica target data collected in 2022
 - 18 times 2010 statistics
 - Being calibrated
 - Measure high-momentum kaon yields

Lukas Berns, NBI 2019

Measurements for Fermilab Experiments

FTPCs

- Needed for higher momentum proton
- A "Tandem TPC" concept
- Beam off-time background rejection

JINST 15 (2020) 07, P07013

FTPCs

• Greatly improved the acceptance in the forward region

Event Display of 120 GeV/c proton + C

Measurements for Fermilab Experiments

- 2015 2017, 2023
- Beam
 - Proton at 120 GeV/c (primary)
 - Proton at 60, 90 GeV/c (secondary)
 - Pion at 60 GeV/c (secondary)
 - Kaon at 60 GeV/c (secondary)
- Target
 - Thin (1.5 cm)
 - Carbon
 - Titanium
 - Beryllium
 - Aluminum
 - Thick
 - NuMI replica

NuMI target in at NA61

Production and Inelastic Cross Section Measurements

 Production and inelastic cross sections of protons on carbon, beryllium, and aluminum targets at 60 GeV/c and 120 GeV/c

Production and Inelastic Cross Section Measurements

 Production and inelastic cross sections of protons on carbon, beryllium, and aluminum targets at 60 GeV/c and 120 GeV/c

Measurements of π^+ + C/Be at 60 GeV/c

- Production and inelastic cross sections for π^+ + C/Be at 60 GeV/c
- Differential cross sections of π^- , π^+ , K^- , K^+ , protons, K^0_{S} , Λ and anti- Λ

• 120 GeV/c p + C neutral hadron multiplicities

Combined Measurement

FTFP BERT

• 120 GeV/c p + C charged hadron multiplicities (Including FTPCs for the first time)

• 120 GeV/c p + C charged hadron multiplicities

Phys.Rev.D 108 (2023) 072013

• 120 GeV/c p + C charged hadron multiplicities

Phys.Rev.D 108 (2023) 072013

• 120 GeV/c p + C charged hadron multiplicities

Phys.Rev.D 108 (2023) 072013

Similar measurements using 60 GeV/c p + C data are ongoing

Measurements with NuMI Replica Target

- High statistics dataset collection in 2018
- Proton at 120 GeV/c
- Calibration is underway
- Main challenge
 - Complicated target geometry
 - Asymmetry in ϕ
- Measurement of differential hadron production[®]
 - In similar way as T2K replica target measurement

Measurements for the DUNE

Data-taking with LBNF/DUNE Prototype Target

- Data-taking planned in July 2024
- Partial target data-taking in 2025
- 120 GeV/c proton beam
- 1.5-m long LBNF/DUNE prototype target
- Measurement of differential hadron production yields

Data-taking with LBNF/DUNE Prototype Target

- Leading systematic uncertainty in the T2K replica target measurement is extrapolation of shallow-angle tracks backward to the target surface
- Long Target Tracker under development at KFKI/ Wigner in Budapest

How will NA61/SHINE Results be Applied?

Package to Predict Flux (PPFX)

- PPFX:
 - Experiment-independent neutrino flux determination package for the NuMI beam (MINERvA Collaboration, <u>Phys. Rev. D 94, 092005</u>, Leonidas Aliaga Soplin, <u>PhD thesis</u>)
 - Provides hadron production corrections and propagate uncertainties
 - Uses external hadron production data
 - Mainly NA49 p + C @ 158 GeV/c
 - Scaled to lower momenta using FLUKA
- Both charged and neutral measurements of NA61/SHINE proton + carbon @ 120 GeV/c data are being added in PPFX

DUNE Near Detector Flux Uncertainty

- Hadron production uncertainty that will be covered by NA61/SHINE
 - Pion production (proton + carbon)
 - Kaon production (proton + carbon)
 - Pion production (neutron + carbon)
 - Nucleon production (proton + carbon)
 - Nucleon incident interactions
- Please expect the updated flux uncertainty in the coming months!

Post-LS3 (2027-)

- A low-energy (2-13 GeV/c) beam designed by CERN beam group
- Beam may be available after CERN's Long Shutdown 3 (LS3)

Physics Motivations of the Low-energy Beam

- Accelerator-based neutrino experiments
 - T2K, Hyper-K (pion at 2 GeV, 8 GeV)
 - LBNF/DUNE
 - Short-baseline Neutrino Program (proton at 8 GeV)
- Atmospheric neutrino experiments
 - sub-GeV neutrinos at Super-K, Hyper-K, DUNE
- Spallation neutron source neutrino experiments
 - JSNS² (proton at 3 GeV)
 - COHERENT (proton <2 GeV)
- Muon experiments
 - COMET (proton at 8 GeV)

ND280: Neutrino Mode, v.,

ND280: Neutrino Mode, v.

Fermilab Neutrino Seminar April 25th, 2024

spectromete

(solenoid · tracker

NA61++/SHINE

- Workshop focused on the physics program for the NA61/SHINE after LS3
 - <u>https://indico.cern.ch/event/1174830/</u>
- We are still seeking new ideas and new collaborators.

Summary

- NA61/SHINE provides unique hadron production measurements to support the accelerator-based neutrino experiments
 - Greatly reduced T2K flux uncertainty
 - Recent results will benefit neutrino experiments at Fermilab
- DUNE prototype target data taking planned this year
- Many exciting opportunities after LS3 (2027-)
- We welcome new collaborators!

Total XSec Uncertainty

	U _{G4}	Ni					
		Production cross section (mb)					
Interaction	p (GeV/c)	$\sigma_{ m prod}$	Δ_{stat}	Δ_{syst}	Δ_{model}	Δ_{total}	$rac{\sigma_{ m prod}}{\sigma_{ m G4}}$
p + C	60	226.9	±3.1	$\pm^{2.6}_{2.9}$	$\pm^{0.2}_{4.8}$	$\pm^{4.1}_{6.4}$	1.05
p + Be	60	185.3	±4.9	$\pm^{1.1}_{1.5}$	$\pm^{0.0}_{5.2}$	$\pm^{5.0}_{7.3}$	1.03
p + Al	60	409.3	± 7.8	$\pm^{3.0}_{5.1}$	$\pm^{0.2}_{8.4}$	$\pm^{8.4}_{12.5}$	1.05
p + C	120	227.1	± 3.4	$\pm^{2.5}_{3.5}$	$\pm^{0.0}_{12.2}$	$\pm^{4.2}_{13.1}$	1.07
p + Be	120	190.8	± 3.7	$\pm^{1.7}_{1.8}$	$\pm^{0.1}_{14.3}$	$\pm^{4.1}_{14.9}$	1.04

		Inelastic cross section (mb)					
Interaction	p (GeV/c)	$\sigma_{ m inel}$	Δ_{stat}	Δ_{syst}	Δ_{model}	Δ_{total}	$rac{\sigma_{ m inel}}{\sigma_{ m G4}}$
p + C	60	252.6	±3.2	$\pm^{2.5}_{2.9}$	$\pm^{0.0}_{4.8}$	$\pm^{4.1}_{6.5}$	1.05
p + Be	60	207.8	± 5.0	$\pm^{1.2}_{1.4}$	$\pm^{0.0}_{4.3}$	$\pm^{5.1}_{6.7}$	1.03
p + Al	60	444.5	±7.9	$\pm^{3.0}_{5.1}$	$\pm^{0.0}_{7.0}$	$\pm^{8.5}_{11.7}$	1.05
p + C	120	251.3	±3.6	$\pm^{2.7}_{3.7}$	$\pm^{0.0}_{14.1}$	$\pm^{4.5}_{15.0}$	1.06
p + Be	120	212.5	±3.9	$\pm^{1.9}_{1.8}$	$\pm^{0.2}_{16.0}$	$\pm^{4.3}_{16.6}$	1.04

`OG4'

Pion @ 60 Uncertainty

Pion @ 60 Uncertainty

Charged Analysis

- In each kinematic bin, likelihood-based dE/dx fit performed to track dE/dx distribution
- Result: Fraction of e+/-, π+/-, K+/-, p/p, D+/- in each kinematic bin
 - Positive and negative tracks fit simultaneously in order to constrain calibration parameters
- Total number of each species used to calculate identified multiplicity in each bin

dE/dx vs. log|p|, Positive Tracks (Cuts Applied)

Charged Analysis

- In each kinematic bin, likelihood-based dE/dx fit performed to track dE/dx distribution
- Result: Fraction of e+/-, π+/-, K+/-, p/p, D+/- in each kinematic bin
 - Positive and negative tracks fit simultaneously in order to constrain calibration parameters
- Total number of each species used to calculate identified multiplicity in each bin

Uncertainty of pC120 Charged Analysis

Uncertainty of pC120 Charged Analysis

V0 analysis

- Reconstruct collection of V0 candidates using V0 finder & fitter algorithms
- Calculate neutral kinematics using decay product assumption
- Improve purity of V0 sample by applying selection cuts
- Fit invariant mass distributions for signal yield
- Calculate & apply bin-by-bin Monte Carlo corrections
- Calculate multiplicities

V0 analysis

• The Armenteros-Podolansky distribution

X-axis: $\alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$ (Asymmetry in the longitudinal momenta of the child tracks with respect to the V⁰ track)

Y-axis: p_T (Transverse momenta of V⁰ track)

Uncertainty of pC120 Neutral Analysis

Uncorrelated:

statistical uncertainty, invariant mass fit uncertainty, decay product dE/dx selection uncertainty, reconstruction uncertainty, and V 0 selection uncertainty

0.4

0.3

0.1

-0.1

-0.2

-0.3

-0.4

10 15 20 25 30 35 40 45 p[GeV/c]

Fractional Uncertainty

 $\overline{\Lambda}$ Uncertainties, [0,0.04] rad

Uncertainty of pC120 Neutral Analysis

$$m_{ ext{combined}} = rac{rac{m_1}{\sigma_1^2} + rac{m_2}{\sigma_2^2}}{rac{1}{\sigma_1^2} + rac{1}{\sigma_2^2}}$$

🕑 🛛 Lu Ren

CEDAR

- Cherenkov Differential Counter with Achromatic Ring Focus (<u>CEDAR</u>) counter
 - Uses a gas as radiator, Helium for beam momenta higher than 60 GeV/c and Nitrogen for lower momenta
 - Sophisticated optical system that collects and focuses the Cherenkov photons onto the plane of a diaphragm whose opening can be tuned
 - For a given gas pressure, such as to allow only the photons from the wanted species to pass through and get detected by the 8 PMTs of the counter

	VTPC-1	VTPC-2	MTPC-L/R	GAP-TPC
size (L \times W \times H) [cm]	$250\times200\times98$	250 imes 200 imes 98	$390 \times 390 \times 180$	$30 \times 81.5 \times 70$
No. of pads/TPC	26 886	27 648 63 360		672
Pad size [mm]	3.5 × 28(16)	3.5 imes 28	$3.6 \times 40, 5.5 \times 40$	4×28
Drift length [cm]	66.60	66.60	111.74	58.97
Drift velocity [cm/µs]	1.4	1.4	2.3	1.3
Drift field [V/cm]	195	195	170	173
Drift voltage [kV]	13	13	19	10.2
gas mixture	Ar/CO ₂ (90/10)	Ar/CO ₂ (90/10)	Ar/CO ₂ (95/5)	Ar/CO ₂ (90/10)
# of sectors	2×3	2×3	5×5	1
# of padrows	72	72	90	7
# of pads/padrow	192	192	192, 128	96

Beam Counters

- T1 (identified beam): S1*S2*V1_bar*CED6
- T2 (beam interaction): T1*S4_bar
- T3 (unidentified beam): S1*S2*V1_bar
- T4 (unidentified interaction): T3*S4_bar

detector	dimensions	hole	position	material budget	
	[mm]	[mm]	[m]	$[\%\lambda_I]$	$[\%X_0]$
S 1	$60 \times 60 \times 5$		-36.42	0.635	1.175
S2	$\phi = 28 \times 2$		-14.42	0.254	0.470
S 3	$\phi = 26 \times 5$		-6.58	0.635	1.175
S4	$\phi = 20 \times 5$		-2.11	0.635	1.175
S5	$\phi = 20 \times 5$		9.80	0.635	1.175
V0	$\phi = 80 \times 10$	$\phi = 10$	-14.16		
$V0^p$	$300 \times 300 \times 10$	$\phi = 20$	\approx -14		
V1	$100 \times 100 \times 10$	$\phi = 8$	-6.72		
V1 ^{<i>p</i>}	$300 \times 300 \times 10$	$\phi = 20$	-6.74		
A	$150 \times 5 \times 15$		≈ -146	1.904	3.526
Z	$160 \times 40 \times 2.5$		-13.81	0.562	2.034
BPD-1	$48 \times 48 \times 32.6$		-36.20	0.025	0.070
BPD-2	$48 \times 48 \times 32.6$		-14.90	0.025	0.070
BPD-3	$48 \times 48 \times 32.6$		-6.70	0.025	0.070
Typical thin target position			-5.81		

Data available in PPFX

- Thin target experiments
 - Inelastic cross section
 - Belletini, Denisov, etc. cross sections of pC, π C, π Al etc
 - NA49: pC @ 158 GeV
 - NA61 pC @ 31 GeV
 - Hadron Production
 - Barton: $pC \rightarrow \pi \pm X$ @ 100 GeV xF > 0.3
 - NA49: $pC \rightarrow \pi \pm X$ @ 158 GeV xF < 0.5
 - NA49: $pC \rightarrow n(p)X$ @ 158 GeV for xF < 0.95
 - NA49: pC \rightarrow K ±X @ 158 GeV for xF < 0.2
 - $\blacksquare \quad NA61: pC \rightarrow \pi \pm X \textcircled{0}{2} 31 \ GeV$
 - MIPP: π/K from pC at 120 GeV for pZ > 20GeV/c
- Thick targets experiments (off by default)
 - MIPP: proton on a spare NuMI target at 120 GeV
 - π ± up to 80 GeV/c.
 - K/π for > 20 GeV/c.

Detailed descriptions in Section 4.3.-4.5 of Leo's thesis)

Flux Uncertainty

• Neutrino flux uncertainty limits the precision of measurements in all accelerator-based neutrino experiments

Nucleon-A

- » Quasi-elastic interactions, selected as x_F > 0.95
 - We assign a 40% uncertainty
- » Extension of NA49.
 - We extend NA49 to other materials than carbon adding an additional uncertainty.
 - Additional uncertainty is calculated by looking at: K^0 and Λ^0 production at 300 GeV in Skubic and check with Barton at 100 GeV.

ارك

Incident meson

Main contribution from $\pi \longrightarrow \pi$ in the whole neutrino energy spectrum

Gi

Atmospheric neutrino

if we have data for lower energy $p + N \rightarrow \pi^{\pm} + X$ interactions (down to a few GeV)

SPSC-M-793 (Plots by L. Cook)