
Evaluation of
Distributed Graph
Neural Networks

Training for
Particle Tracking

Alina Lazar
Youngstown State University

Graph Neural
Networks (GNNs) for
Particle Tracking

 GNN-based track pattern
reconstruction is becoming the tool
for track reconstruction.

 Focus: Scaling GNN models

 Training GNNs is challenging due to
the irregular nature of graph data

 It takes weeks to train

 Scaling to large graphs that exceed
the memory capacity of a single
device

2
https://lgm.fri.uni-lj.si/research/high-energy-physics-event-visualisation-cern-collaboration/

Particle Physics Applications as Graph Tasks

Charged Particle Tracking Task

Edge Prediction Node Classification Graph-level Prediction

GNN Tutorial Part 1 - Fundamentals.pptx - Google Slides

Jet Tagging and Event Classification
Particle Transformer for Jet Tagging

Particle Flow Reconstruction

https://openreview.net/pdf?id=PYcp183GBL

Memory Requirements for Training GNNs on Large Graphs

4
Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training

Training GNNs on Large Graphs

5

TrackML (1B nodes, 100B edges)
10k events, 100k nodes, 10 million edges

ClueWeb (1B nodes, 42.5B edges)

The ClueWeb22 Dataset (lemurproject.org)

GNN-based Track Reconstruction Pipeline

 Data Loading and Sampling
• How to store the large-scale graphs?
• How to effectively and efficiently sample

the subgraphs?

 Memory
• Model parameters and hidden states
• How to reduce the memory usage during

training?

6

 Computation
• Feature transformation and aggregation
• How to reduce the training or inference

computation?

 Communication
• Distributed training
• How to efficiently exchange data (graph

data and model data)?

GNN Tutorial Part 1 - Fundamentals.pptx - Google Slides

Methods to Scale up Training

 Data Parallel Training
• Model agnostic. Supported by DL frameworks:

Tensorflow, PyTorch, etc.
• Requires tuning the batch size and learning rate.
• Gets complicated for GNNs

7

 Model Parallel Training
• Model specific, simple to implement
• Harder to optimize (dependencies)
• Good when large models don’t fit into a single GPU
• Streams and input pipelines for speed

https://www.anyscale.com/blog/what-is-distributed-training

Parallelization Schemes – Distributed Data Parallelism (DDP)

8

DDP Initialization Model

GNN Model

GPU 0 GPU 1

Replica 0 Replica 1

DDP Initialization Data

Data Parallelism
Update Strategies
 Synchronous updates

• stable convergence
• can be decentralized (all-reduce)
• computation may be blocked by communication

 Asynchronous updates
• no waiting for gradients
• state gradients affect convergence
• parameter server can be a bottleneck

 Delayed-synchronous updates
• Lagged gradients allow better comms overlap
• Stale gradients affect convergence

9

GPU 0 GPU 1

Replica 0 Replica 1

Data 0 Data 1

Data

Fo
rw

ar
d

P
as

s

B
ac

kw
ar

d
Pa

ss

Distributed Data Parallel Scaling

 Weak scaling (fixed local batch size)
• Global batch size grows with the number of workers
• Local batch size stays constant
• Computation grows with communication
• Good scalability
• Large batch sizes can negatively affect convergence
• Learning Rate Scaling Rule: When the batch size is

multiplied by k, multiply the learning rate by k.

10

1 GPU
4 GPUs

16 GPUs

16 GPUs1 GPU 4 GPUs

 Strong scaling (fixed global batch size)
• Global batch size stays constant
• Local batch size decreases with the

number of workers
• Convergence behavior unaffected
• Communication can become a

bottleneck

Weak Scaling

Strong Scaling

Weak Scaling DDP Experiments

• Experiments were run on A100s nodes with 4 GPUs
per node and 80 GB of memory per GPU

• 100 events for training, 10 for validation and 10
for testing per GPU

How is the performance of training
on 32 GPUs (100 events per GPU)
compared to training on one GPU
with 3200 events?

Strong Scaling DDP Experiments

12

• Experiments were run on A100s nodes
with 4 GPUs per node and 80 GB of
memory per GPU

• GPU memory utilization of 88.65%

• 80 events for training, 10 for validation
and 10 for testing

• Average number of nodes 84k ± 9k
• Average number of edges 2.6m ± 600k

Strong Scaling DDP - Efficiency and Purity

13

 Using the strong scaling DDP at the event level degrades the physics performance in terms of efficiency
and purity.

 Also, we want to scale to large event graphs that exceed the memory capacity of single GPUs.
 OpenAI model of noise scale indicates an optimum batch size lower than the full event
 Solution: breaking the graphs into smaller subgraphs that can fit in the memory of single GPUs.

Partitioning versus Mini-Batch Schemes for GNN Training

14

Haiyang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks

Graph Partitioning GNN Training

15

 Samples are partitioned across batches
when the graph does not fit in the device’s
memory

 Each node and/or edge belongs to one
partition

 There is no overlap between partitions
 Colors indicate partition

Partitioning versus Mini-Batch Schemes for GNN Training

16

Haiyang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks

Mini-batch GNN Training

17

 Sample-based training first samples the graph
to build mini-batches

 Sampling starts by selecting random subsets
of nodes, edges, or subgraphs to be included
in the mini-batch

 In a GNN model with n layers, each mini-batch
includes the input features of the n-hop
neighborhood of those target nodes

 There is overlap between the mini-batches

 Once the mini-batches are generated,
distributed training can be applied

Training and Validation Loss Results for Mini-batch GNN training

18

• 80 events for training, 10 for validation,
and 10 for testing

• Average number of nodes 84k ± 9k
• Average number of edges 150k ± 30k
• Number of nodes in subgraph: 2048

Full-batch – 80 batches
Mini-batch – 3294 batches

Efficiency and Purity - Full vs Mini-batch GNN training

19

Full-batch best efficiency: 0.957
Mini-batch best efficiency: 0.989

Full-batch best purity: 0.856
Mini-batch best purity: 0.956

Mini-batch training produces better models than full-batch training

Efficiency and Purity - Mini-batch DDP GNN training

20

Mini-batch sizes:
• 1 GPU – 3.2k
• 2 GPUs – 1.6k
• 4 GPUs – 0.8k

Mini-batch best efficiency:
• 1 GPU – 0.989
• 2 GPUs – 0.987
• 4 GPUs – 0.988

Mini-batch best purity:
• 1 GPU – 0.956
• 2 GPUs – 0.954
• 4 GPUs – 0.956

Mini-batch training scales better to multi-GPUs than full-batch training

Recipe to Scale Training of GNNs

Start with a model which
trains well on a single GPU

Optimize the single-node /
single-GPU performance

Distribute the training
across multiple processors

21

• Using performance analysis tools

• Tuning and optimizing the data pipeline (HPO)

• Make effective use of the hardware (e.g. mixed
precision)

• Multi-GPU, multi-node training: data and/or model
parallel

• Use best practices for large scale training and
convergence

• Use best optimized libraries for communication, tune
settings

Conclusions and Future Work

 Scaling GNN training is challenging!

 Weak scaling can be done at event level

 Strong scaling degrades physics performance and requires graph sampling

 Graph sampling (mini-batches) improves the performance of GNN training

 Scaling graph sampling-based training requires:
• Sampling algorithms that can form mini-batches without losing information
• Systems that can execute these algorithms efficiently

22

 Further testing and tuning of the sampling and partitioning methods is needed

 Sampling and data loading are expensive

 Sampling only works for node and edge-level tasks and requires special implementation for long-range dependencies

 How to distribute and store the graph data?

 How to transfer batches in and out of the GPUs to minimize the data transfers?

Thank you!
23

Thanks to:
- Ivan Ladutska
- Brenden Reeves
- Tuan Minh Pham
- Jay Chan
- Daniel Murnane
- Xiangyang Ju
- Paolo Calafiura

The Relationship between Batch Size and Learning Rate

 Batch size is a hyperparameter
 A larger batch size allows computational

speedups from the parallelism of GPUs
 Too large of a batch size leads to poor

generalization
 A batch equal to the entire dataset

guarantees convergence to the global
optima

 A smaller batch size has been shown to
have faster convergence

 The downside of using a smaller batch
size is that the model is not guaranteed to
converge to the global optima

24ImageNet Dataset

Learning Rate Scaling Rule

Learning Rate Scaling Rule: When the batch size is multiplied by k, multiply the learning rate by k.

25

Mini-batch Stochastic Gradient Descent:

Typical practice/suggestion:
• Keep local batch size per worker the same
• Increase the global batch size linearly with the number of devices
• Increase the learning rate proportionally: 𝑙𝑟 = 𝑙𝑟 ∗ 𝑛𝑢𝑚_𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑤 = 𝑤 − 𝜂
1

𝑛
∇𝑙 𝑥, 𝑤

∈ℬ

𝜂 is the learning rate
ℬ is the mini-batch

McCandlish, Sam, et al. "An empirical model of large-batch training." arXiv preprint arXiv:1812.06162 (2018).

