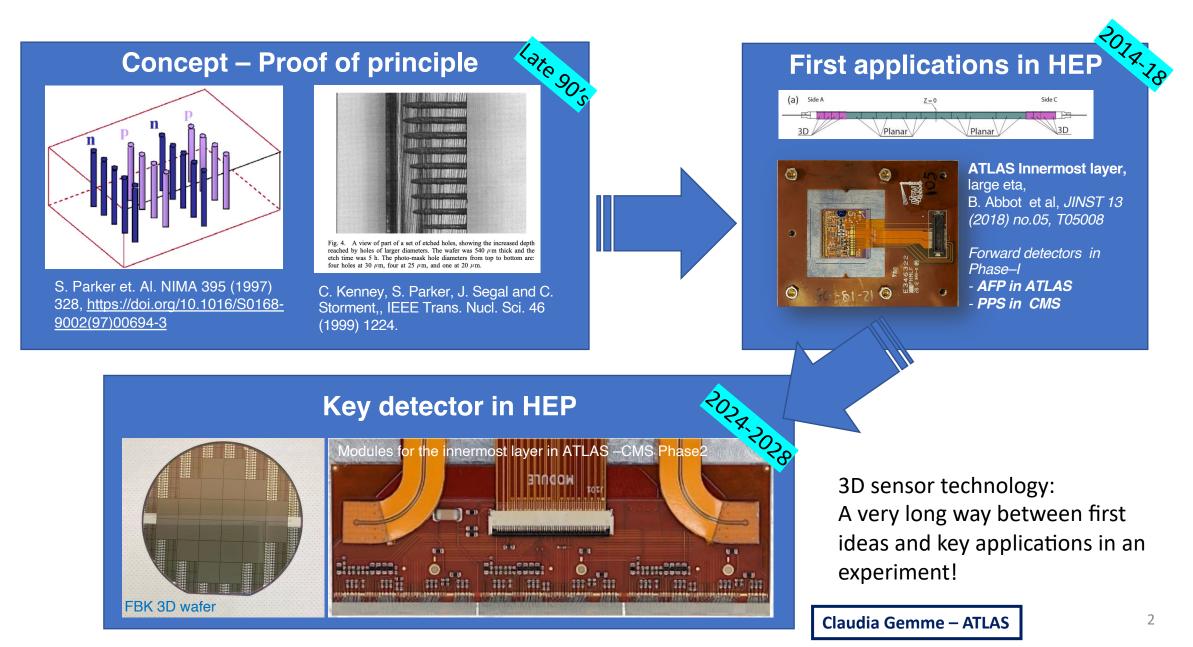
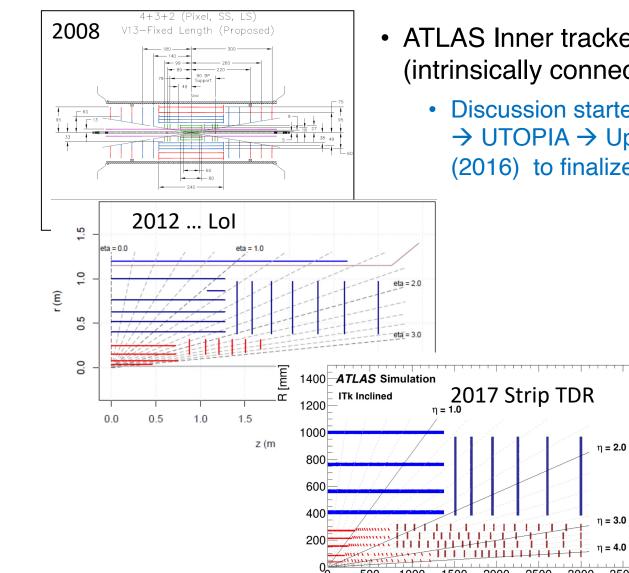
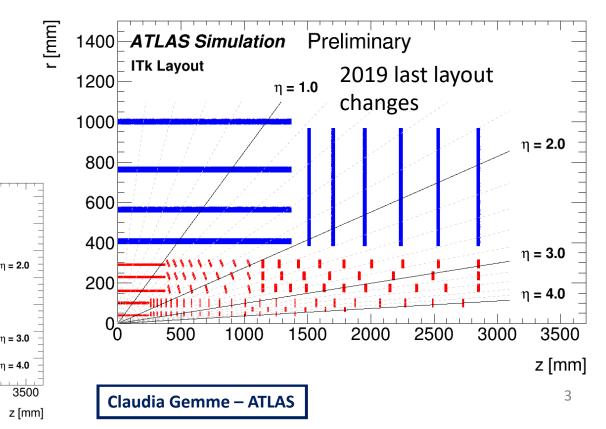


Inaugural US Muon Collider Meeting FNAL – August 9, 2024


Overview of Detector R&D Needs towards a multi-TeV Muon Collider experiment design

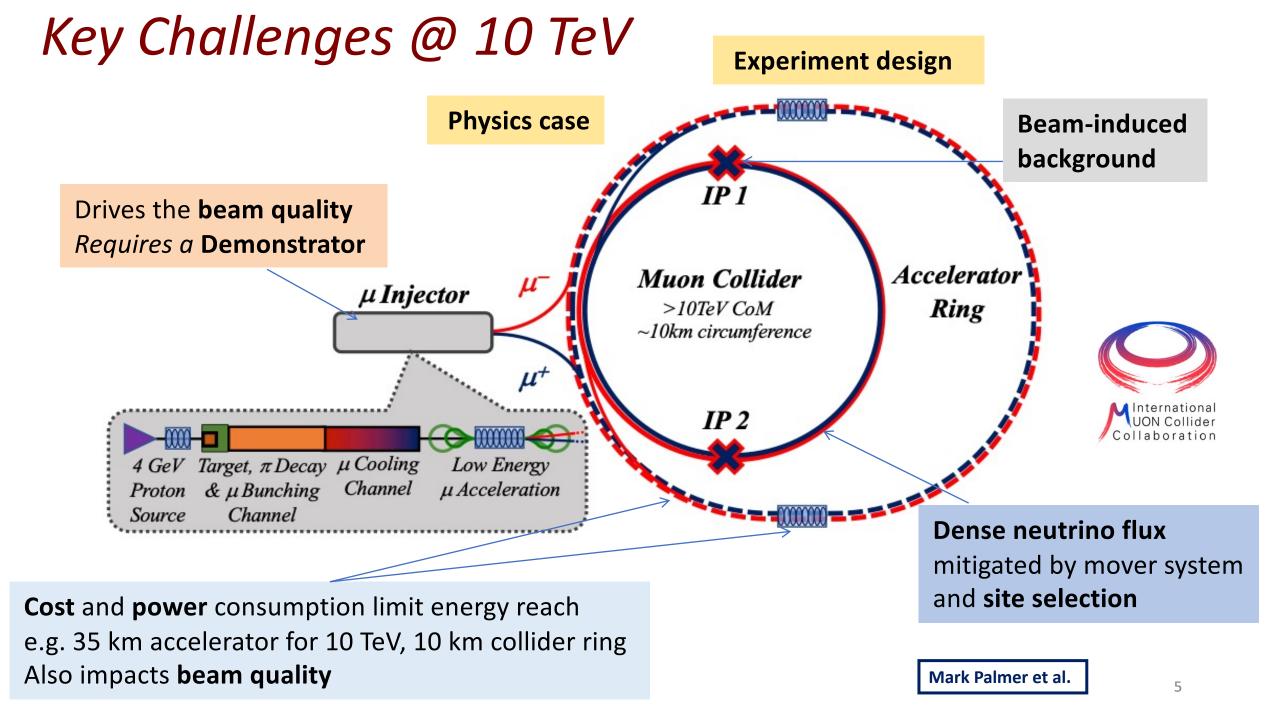
a collection of infos/hints from a lot of work, discussions, mistakes and great achievements of a community




From R&D to HEP: one example

From ideas to HEP: one example

- ATLAS Inner tracker layout for Phase-2 had a very long story (intrinsically connected to technology, bkg...):
 - Discussion started in (at least) 2006 → Layout Advisory Committee
 → UTOPIA → Upgrade Layout TF, up to the ITk Layout Task force
 (2016) to finalize Layout for TDRs. Last minimal changes in 2019.

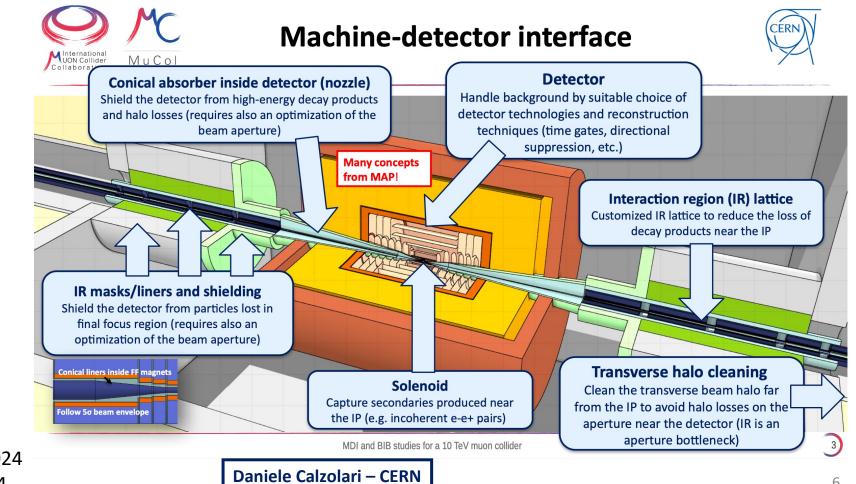


Towards a multi-TeV Muon Collider

FINAL GOAL: to exploit the physics potential of such a unique facility aiming at the highest energy and highest luminosity

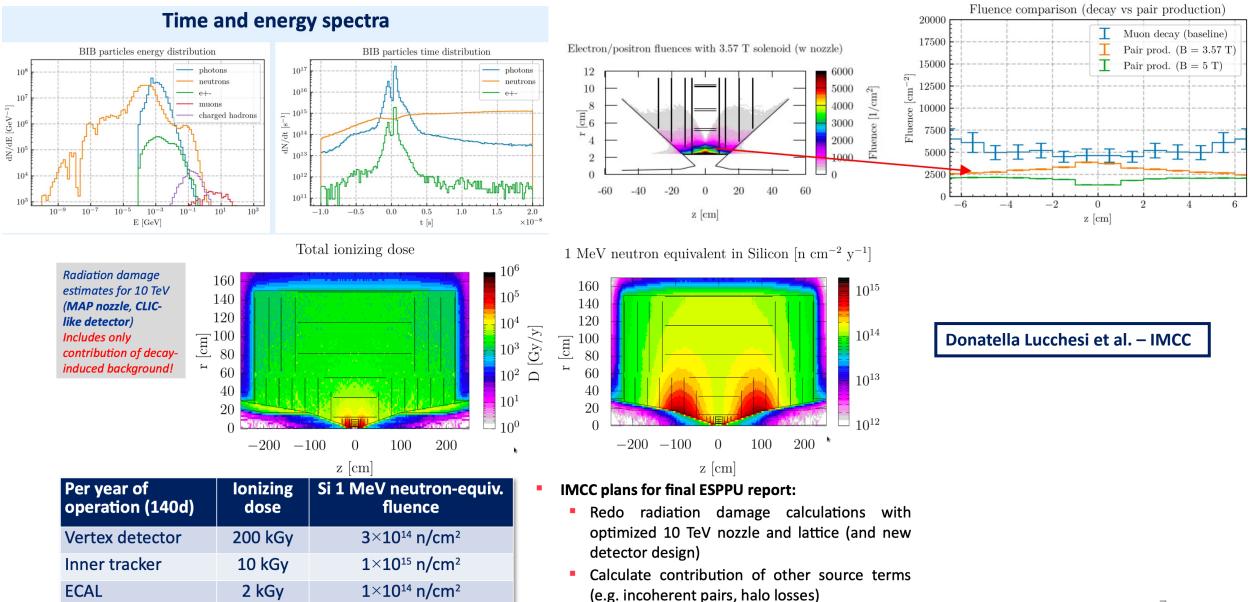
Advances in detector and accelerator pair with the opportunities of the physics case

- Muon Collider a long story
- New Physics opportunities: Direct searches+Precision \rightarrow rich physics program
- New key technologies for both accelerator (not this talk but strongly interlinked!) and experiments (detector sensors, electronics, data handling, AI...) are becoming available
 Time scale is becoming feasible for a multi-TeV collider facility to be ready by 2050
- Synergies for enabling technologies opens new opportunities now and in the next 5-10 years
- The level of complexity requires to plan ahead evaluating the needs but with an open mind for ingenuity
- Detector field is a great playground to deeply understand Nature and benefit Society

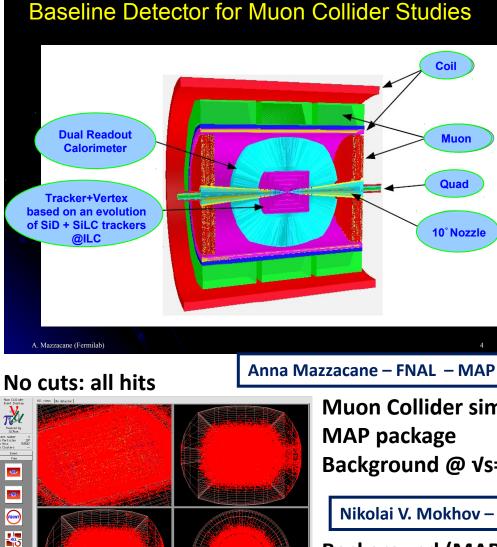


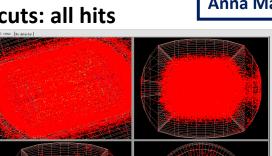
The constraint & the challenge to design and operate an experiment

Machine Detector Interface - beam-induced background


Background is a significant driver for MDI design - background sources:

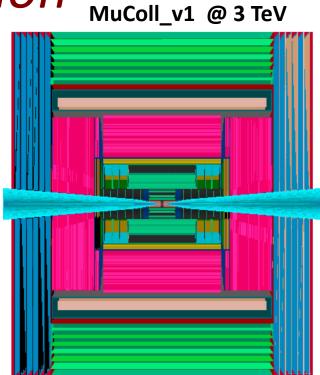
- Muon decay
- Beam halo losses and Beam-beam (mainly incoherent e-/e+ pair production) •




Workshop @ CERN 11 – 12 March 2024 Workshop @ CERN 25 – 26 June 2024

Experimental environment due to beam background

Experiment design evolution



Muon Collider simulation: Background @ Vs=125 GeV

Nikolai V. Mokhov – FNAL – MAP

Background (MARS simulation) from muon decays and interaction with machine elements included

New detector concepts: **MUSIC** and **MAIA** moving the solenoid inside the calorimeters

MUSIC design @ 10 TeV

Donatella Lucchesi et al. – IMCC

Crucial full simulation studies for Detector performance for low- and high-momentum ...

Massimo Casarsa et al. – IMCC

Experiment design requirements @ 10 TeV

Aim at **10+ TeV** and potential initial stage at **3 TeV NEW OPTION:** initial 10 TeV stage at reduced luminosity **Interim report** <u>https://arxiv.org/abs/2407.12450</u>

Strong interest in developing:

- 4D vertex and tracker sensors
- new calorimeters 4D or 5D ideas
- sustainable muon detector
- front-end electronics with on-board intelligence
- powerful reconstruction algorithm
- Al simulation ans analysis tool

Detector technology R&D and design

- we can do the important physics with technology being implemented for HL-LHC upgrades or follow-ups
- available time will allow to improve further and exploit synergies and new emerging technologies

"Strong planning and appropriate investments in Research and Development (R&D) in relevant technologies are essential for the full potential, in terms of novel capabilities and discoveries, to be realised" ESPPU 2020

Detector R&D in US - CPAD

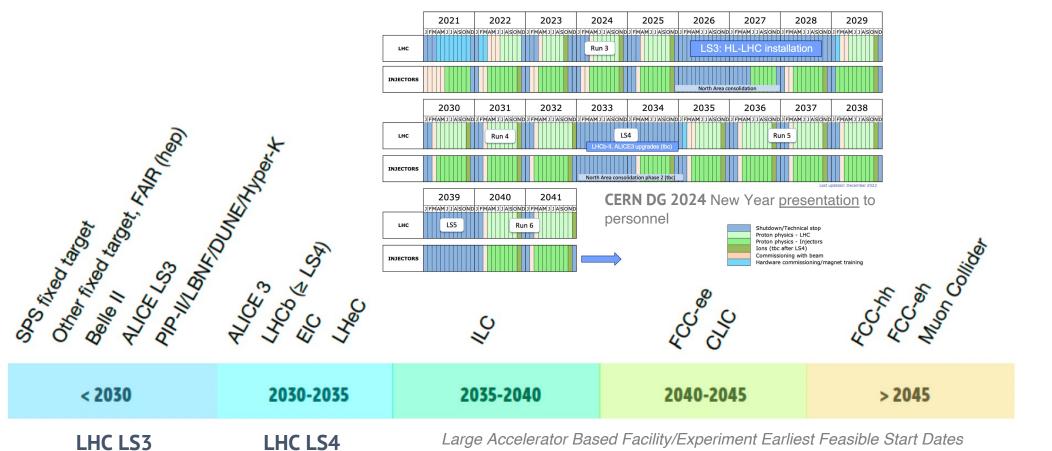
Jonathan Asaadi

4a) Support <u>vigorous R&D toward a</u> <u>cost-effective</u> <u>10 TeV pCM collider</u> based on proton, <u>muon</u>, or possible wakefield technologies, including an <u>evaluation of options for US</u> <u>siting of such a machine</u>, with a <u>goal of being ready to build</u> <u>major test facilities and</u> <u>demonstrator facilities within</u> <u>the next 10 years</u> [see sections 3.2, 5.1, 6.5, and

also Recommendation 6]


	RDC#	ΤΟΡΙϹ				
	1	Noble Element Detectors				
	2	Photodetectors				
	3	Solid State Tracking				
	4	Readout and ASICs				
	5	Trigger and DAQ				
	6	Gaseous Detectors				
	7	Low-Background Detectors				
	8	Quantum and Superconducting Sensors				
	9	Calorimetry				
	10	Detector Mechanics				
	11	Fast Timing				

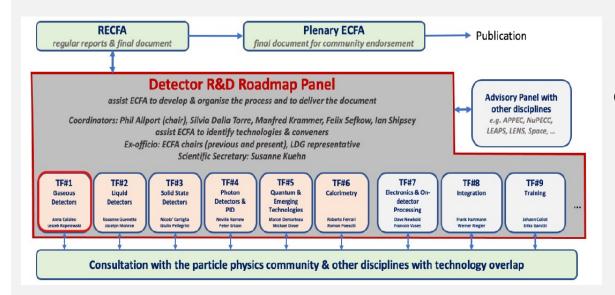
After Snowmass recommendation to create Detector R&D collaborations in the US


- Organized by CPAD (Coordinating Panel for Advanced Detectors) of the APS/DPF (one chairperson from CPAD is in DRDC)
- They created **11 RDCs** (R&D Collaborations) and appointed coordinators (see <u>CPAD website</u>)
- Recently started to reach out to the community and work on detailed planning
- Overlap to DRDs through people/groups involved in both and liaisons

ECFA Detector Roadmap Timeline

- Five time periods defined, from now to 2045 and later.
 - the Future Large Experiments

for (HL)-LHC Schedule Future Smaller Experiments



Indicative timeline out to 2041

ECFA Detector R&D Roadmap

The 2021 ECFA detector research and development roadmap

- ESPP 2020 update: ECFA mandated to prepare a Detector R&D roadmap for future HEP projects
- Roadmap Panel: define Detector Research and Development areas & organise wide community consultation
 - establish strategic project performance requirements and their criticality to the physics program
 - assess potential of technology options and studies needed to fulfil the requirements in due time

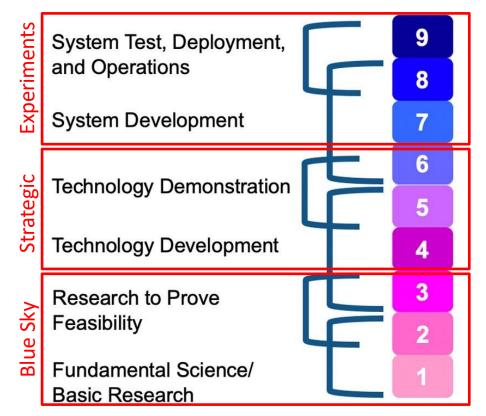
Roadmap was approved by Plenary ECFA in Nov. 2021 10 General Strategic Recommendations GSR4: international coordination & organization of R&D activities GSR6: establish long term strategic funding program

ECFA <u>implementation</u> proposal to form DRD collaborations hosted at CERN was endorsed by Council Sep. 2022

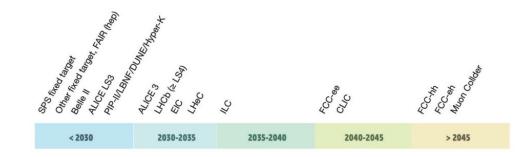
P. Allport chair - ex-officio ICFA-IIDP chair I. Shipsey

Didier Contardo @ ICFA Seminar 2023

Detector Research and Development – DRD


international collaborations anchored at CERN: implementation

- The **General Strategic Recommendations** (GSR) topics are:
 - Supporting R&D facilities: test beams, large scale generic prototyping and irradiation
 - Engineering support for detector R&D
 - Specific **software** for instrumentation
 - International coordination and organisation of R&D activities
 - Distributed R&D activities with centralised facilities
 - Establish long-term strategic funding programmes
 - "Blue-sky" R&D
 - Attract, nurture, recognise and sustain the careers of R&D experts
 - Industrial partnerships
 - Open Science
- New Detector R&D (DRD) collaborations are now in place* to pave the way for the next decades.
 - Main goal: instrumentation should not be limiting factor to meet the needs of the long-term particle physics program
 - Collaborations will bring to maturity a spectrum of techniques where experiments will follow-up to their own needs


Roadmap implementation plan: Strategic vs Blue-Sky

- Strategic R&D bridges the gap between the idea (so-called Blue Sky, TRL 1-3) and the deployment and use in a HEP experiments (TRL 8-9)
 - Detector R&D Collaboration should address Strategic R&D (TRL 3-6), before experimentspecific engineering takes over.
 - Covers the development and maturing of technologies, e.g.
 - Improving radiation hardness
 Speeding up readout
 Simplification of designs
 Iterating different options
 - Backed up by strategic funding, agreed with funding agencies (MoUs)
- DRD collaborations should also contain a small Blue Sky section
 - Allow new developments to emerge
 - Possibly financed by common fund + institute contributions (RD50/51 scheme)

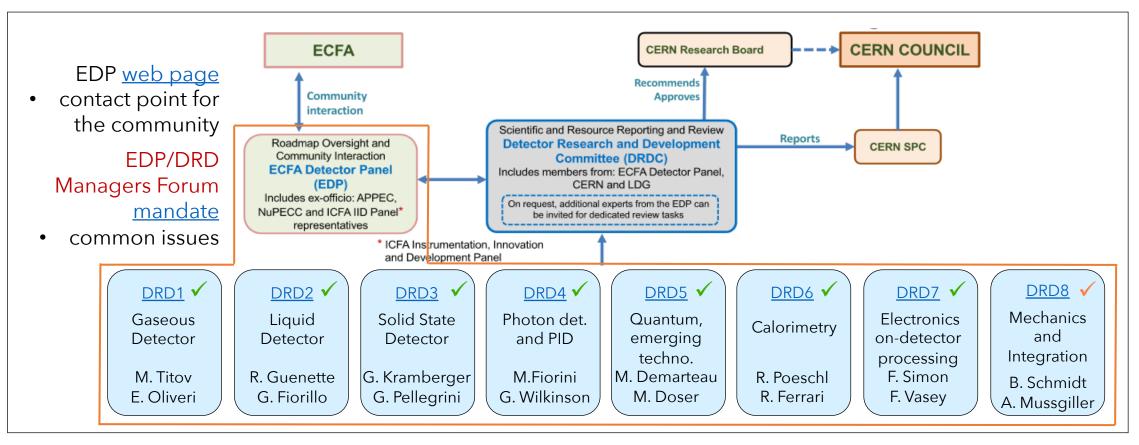
Technology Readiness Levels (TRLs) defined by NASA: Method for estimating the maturity of technologies

Detector Readiness matrix → DRD

Focus on the technical aspects of R&D requirements given the EPPSU list of "High-priority future initiatives" and "Other essential scientific activities for particle physics"

- Must happen or main physics goals cannot be met
- Important to meet physics goals
- Desirable to enhance physics reach
- R&D need being met

		DRDT	< 2030	2030-2035	2035- 2040 2040-2045	>2045
	Position precision	3.1,3.4	• • •			
	Low X/Xo	3.1,3.4			ě ě ě	ŏŏă
	Low power	3.1,3.4		ě i i ě i	ě ě ě	ŏŏŏ
Vertex	High rates	3.1,3.4				ŏ • ŏ
detector ²⁾	Large area wafers3)	3.1,3.4				
	Ultrafast timing4)	3.2		- • • • •		0 • Ŏ
	Radiation tolerance NIEL	3.3		• •		ě T
	Radiation tolerance TID	3.3		• •		ŏ
	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4				
	Low power	3.1,3.4				
	High rates	3.1,3.4				•
Tracker ⁵⁾	Large area wafers3)	3.1,3.4				
	Ultrafast timing ⁴⁾	3.2				
	Radiation tolerance NIEL	3.3		•		
	Radiation tolerance TID	3.3		•		•
	Position precision	3.1,3.4				
	Low X/Xo	3.1,3.4				
	Low power	3.1,3.4		• •		
Calorimeter ⁶⁾	High rates	3.1,3.4				
Calorimeter	Large area wafers ³⁾	3.1,3.4				ŏ o o
	Ultrafast timing ⁴⁾	3.2				Ö Ö Ö
	Radiation tolerance NIEL	3.3			Part Part	
	Radiation tolerance TID	3.3				
	Position precision	3.1,3.4			• •	•
	Low X/Xo	3.1,3.4			• •	•
	Low power	3.1,3.4				•
lime of fileht?	High rates	3.1,3.4				
lime of flight ⁷⁾	Large area wafers3)	3.1,3.4			•	
	Ultrafast timing ⁴⁾	3.2	•			•
	Radiation tolerance NIEL	3.3		•		
	Radiation tolerance TID	3.3				


Bus 2025

Weeners Belleners Mereners Meres Mer

Facility \rightarrow

DRD collaborations hosted at CERN (framework)

follows general conditions for execution of experiments at CERN

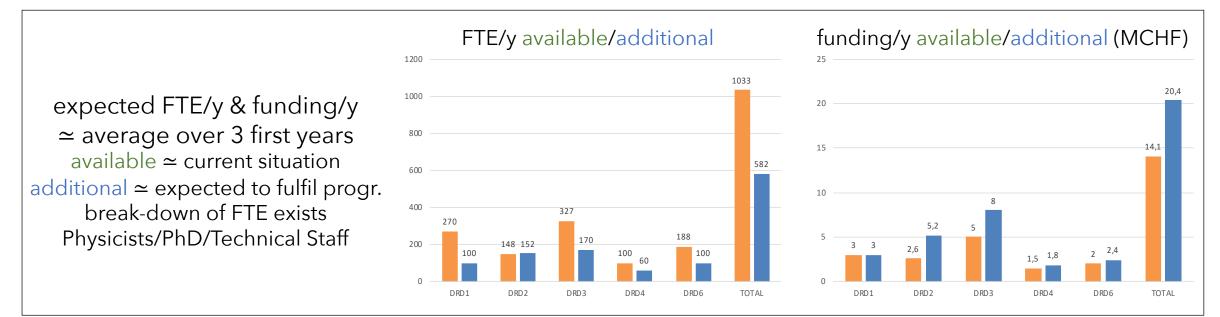
✓ Approved by CERN RB*, ✓ DRD8 LoI submitted to DRDC, proposal aims end-2024

DRDC wep page, presentations of DRDs at open sessions

* approvals cover a period of three years - to be renewed

Didier Contardo @ PECFA July 2024

DRD proposal content


- Scientific programme
 - breakdown in Work Packages with Deliverables due to achieve research goals Milestones
 - considering development of technologies for other DRDs and/or shared developments of similar components with different specifications or operating conditions
- Planning is focused on first R&D period of 3 4 years with prospect for longer term
 - stepping stone projects on the time scale of HL-LHC LS4
 - iterations toward new technologies new materials ultimate radiation tolerance for longer term
- Human resources and funding at the level of WPs to evaluate feasibility
 - in public document
 - list of institute wishes to contribute
 - estimate of human and funding resources required
 - sums of the available/additional expected resources
 - confidential to DRDC at the level of institutes
 - human and funding resources expected to be available/prolongated
 - new resources being requested to achieve the strategic scope

> Basis to establish Funding Agency commitments to WP deliverables in MoUs

Didier Contardo @ ICFA Seminar 2023

DRD resources

- Initial estimates of resources in DRD proposals
 - based on a bottom-up approach (not commitments)
 - needs and pledges to be consolidated with MoU preparation
 - sufficient flexibility to accommodate progress & timeline evolutions & different sources and cycles of resources
- Resources appear to be on low side to fulfill entire program $\simeq 2/3 \& 1/2$ for manpower & funding*
 - potential ramp-up, ex. expected with completion of on-going projects (HL-LHC upgrades...)
 - access to new technologies can be expensive, needing to widely gather contributions

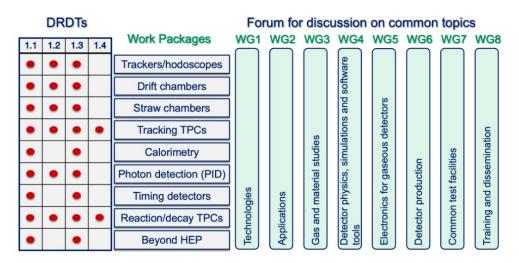
Didier Contardo @ PECFA July 2024

* R&D programmes are running so far on presently available resources

DRD1: Gaseous Detectors

DRDT 1.1 Improve time and spatial resolution for gaseous detectors with long-term stability

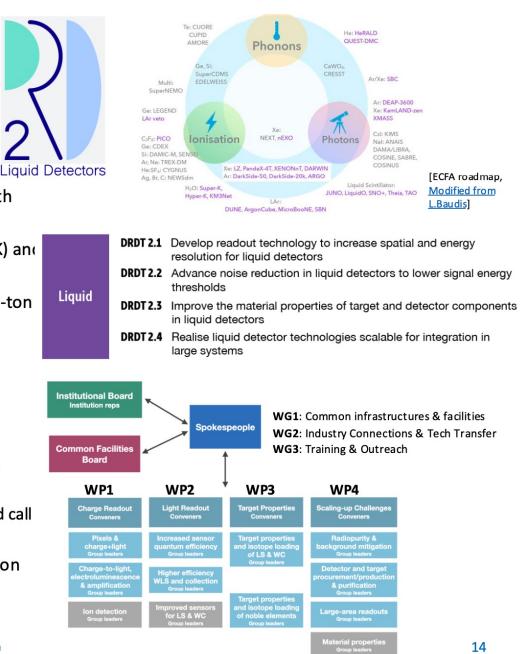
DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes


DRDT 1.3 Develop environmentally friendly gaseous detectors for very large areas with high-rate capability

DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

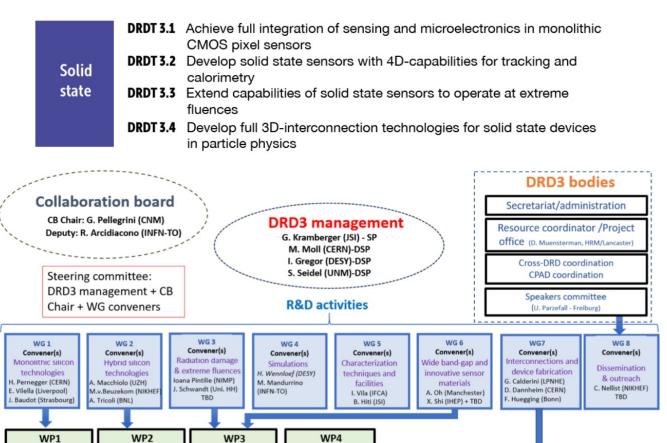
Organized in

Gaseous


- Working Groups: serving as the backbone of R&D
- Work Packages: will reflect the DRDTs,
- and Common Projects (blue sky) financed by fixed yearly fee (Common Fund)
- Large community of 170 institutes, 700 members, 33 countries
- Anticipated budget: 3 MCHF/y existing, additional 3 MCHF/y requested, 270/100 FTE
- Complete DRD1 management structure in place CB board chair: Anna Colaleo, CB deputy: Leszek Ropelewski; Spokespersons: Eraldo Oliveri, Maxim Titov + MB + WG & WP leaders
- Collaboration website: <u>https://drd1.web.cern.ch</u>
- DRD1 collaboration meetings: Jan 29 Feb 2, 2024 link, 2nd Collaboration Meeting June 17-21, 2024 link + regular
 WG meetings
- Started to work on MoU based on RD51 MoU, and started discussion with CERN
- Requested six weeks of beamtime at CERN SPS

DRD2: Liquid Detectors

- Covers Dark Matter and Neutrino experiments, accelerator and accelerator-based
- Several large-scale and many small-scale experiments running or foreseen with liquid detectors
- Technology: Noble Liquids (e.g. DUNE), Water Cherenkov (e.g. Super/Hyper-K) and Liquid Scintillator with light and ionization readout
- Underground Dark Matter Experiments small and rare signals R&D for multi-ton scale noble liquids:
 - Target doping and purification
 - ✦ Detector components radiopurity and background mitigation
- Feb. 5-7, '24: inaugural DRD2 Collaboration Meeting at CERN https://indico.cern.ch/event/1367848/
 - Exciting scientific programme! 156 participants, 91 contributed talks, from 71 institutes in 15 countries
 - Governance working group plan for definition of Collaboration Board (CB) and call for CB chair nominations
- CB Board chair election 1 March 2024: W. Bonivento; spokespersons election on June 2024: G. Fiorillo & R. Guenette. Election of WP/WG leaders in July.



non-

5 July 2024

DRD3: Solid State Detectors

- DRD3 benefits from existing <u>RD50</u> collaboration
 - Extended by diamonds (<u>RD42</u>) and 3D integration
 - ✦ Large interest in CMOS (DMAPS) sensors
- Large Collaboration: 143 institutes, 28 countries, ~900 interested people
 - + \sim 70% are from Europe, 15% from North America,
 - ✤ Compare: RD50: 65 institutes and 434 members
- Budget:
 - ~5 MCHF/y (existing), ~8 MCHF/y (requested)
 - ✤ 327 FTE (existing), 170 FTE (requested)
- Collaboration website: <u>https://drd3.web.cern.ch</u>
- CB Board chair elected: Giulio Pellegrini (CNM Spain), deputy Roberta Arcidiacono (INFN Torino); Spokesperson elected: Gregor Kramberger (JSI Slovenia)
- Most of the WG conveners have been elected
- 1st Collaboration meeting: 17-21 June 2024 at CERN https://indico.cern.ch/event/1402825/

Leader(s)

3D-integration&

Interconnections

.......

Leader(s)

Sensors for

extreme

fluences

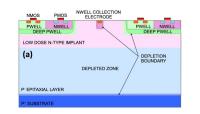
Leader(s)

Sensors for 4D

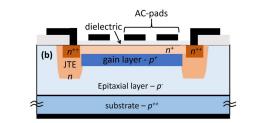
tracking

Leader(s)

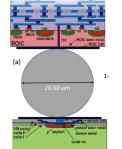
Monolithic


CMOS sensors

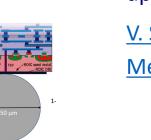
On-going R&D on tracking sensors – DRD3


	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mathrm{\mu m} imes 25\mathrm{\mu m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu{ m m} imes10{ m mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes 5\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

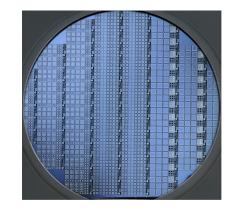
Sinergy with timing sensors development for HL-LHC


Promising technologies

Monolithic devices (CMOS): Good timing and spacial resolution, but radiation hardness to be improved



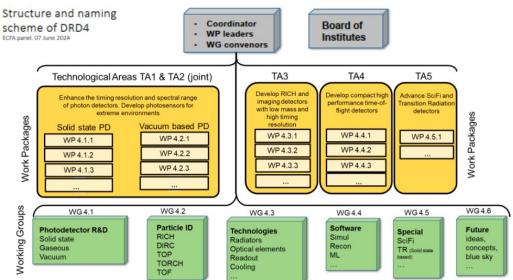
Low Gain Avalanche Detectors (LGAD): Large and fast signal (20-30 ps resolution), moderate radiation hardness


Hybrid small pixel devices:

No gain but fast timing (20-30 ps resolution) and good position resolution. Intrinsically radiation hard

Silicon LGAD sensors for 4D tracking up to very high fluence:

<u>V. Sola et al., Nucl. Instrum.</u> <u>Meth. A 1040 (2022) 167232</u>.



Project funded also by an EU ERC Consolidator Grant

DRD4: Photon Detectors & Particle ID

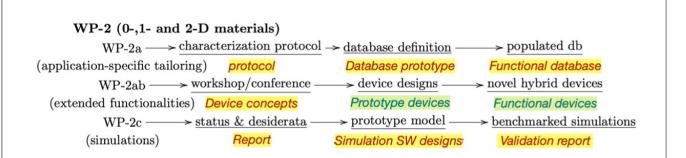
- Developments on PMTs, MCP-PMTs, SiPMs, APD, HPD, quantum devices, SciFi
 - Challenges for example for SiPMs: rad hard, dark rate, timing
- Applications in Ring Imaging Cherenkov Detectors (RICH), Time-of-Flight (ToF), TRD
- Connection to almost every other DRD collab. (gas, Silicon, Calo, electronics, SiPM at cryogenic temp.)
- Collaboration: 74 institutes from 19 countries, 7 (semi-) industrial partners
- Collaboration website: <u>https://drd4.web.cern.ch</u>
- DRD4 constitutional meeting happened at CERN (23-24 January 2024): <u>https://indico.cern.ch/event/1349233/</u>; 2nd collaboration meeting on 17-20 June 2024 at CERN: <u>https://indico.cern.ch/event/1403486/</u>
 - ✦ CB board chair: Guy Wilkinson
 - Spokesperson: Massimiliano Fiorini
 - ♦ WP/WG chairs elected

PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors
Photon	DRDT 4.2	Develop photosensors for extreme environments
, noton	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing
	DRDT 4.4	Develop compact high performance time-of-flight detectors

DRD5: Quantum Sensors

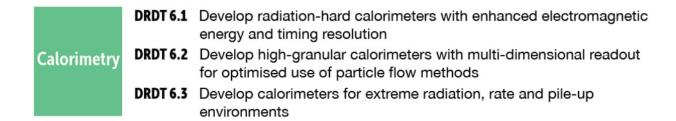
Quantum

DRDT 5.2 Investigate and adapt state-of-the-art developments in guantum technologies to particle physics


DRDT 5.1 Promote the development of advanced quantum sensing technologies

- **DRDT 5.3** Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies
- **DRDT 5.4** Develop and provide advanced enabling capabilities and infrastructure

Roadmap topics


- Quantum Technologies are a rapidly emerging area of technology development to study fundamental physics
 - development of HEP detectors on the long term
- Full proposal developed in the last year
 - Effort driven by Michael Doser (CERN) and Marcel Demarteau (Oak Ridge)
 - Two community workshops [link]
- Re-structured the Roadmap topics into WPs
 - Many reports and documents as deliverables, but this is in the nature of this proposal (early TRL)
- Draft proposal was submitted to DRDC end of February 2024 and sent to interested institutions; 96 groups, 344 participants
 - Approved in June 2024

	Sensor family \rightarrow	clocks & clock	superconduct- ing & spin-	kinetic detectors	atoms / ions / molecules & atom	opto- mechanical	nano-engineered / low-dimensional
	Work Package \downarrow	networks	based sensors		interferometry	sensors	/ materials
	WP1 Atomic, Nuclear	Х			Х	(X)	
	and Molecular Systems						
	$in \ traps \ {\mathcal C} \ beams$						
S	WP2 Quantum		(X)	(X)		Х	Х
WP's	Materials (0-, 1-, 2-D)						
\geq	WP3 Quantum super-		Х				(X)
Proposal V	conducting devices						
	WP4 Scaled-up		Х	(X)	Х	(X)	Х
	$massive \ ensembles$						
	(spin-sensitive devices,						
	hybrid devices,						
	mechanical sensors)						
	WP5 Quantum	Х	Х	X	Х	X	
	Techniques for Sensing						
	WP6 Capacity	Х	Х	Х	Х	Х	Х
	expansion						

DRD6: Calorimetry

- Collaboration emerged from several collaborations like CALICE and CrystalClear (RD18)
- 131 institutions; CB chair: Roberto Ferrari; Spokesperson: Roman Poeschl
- Targets: high granularity, timing resolution, hadronic energy resolution
- 1st Community Meeting 12/1/23 <u>https://indico.cern.ch/event/1212696/</u>
- Input proposals collected until 1st of April 2023
- 2nd Community Meeting 20th April 2023 <u>https://indico.cern.ch/event/1246381/</u>
- Input proposals have been condensed into a DRD final version proposal, submitted to DRDC on November 15th
- DRD-on-Calorimetry approved by CERN Research Board on December 6th to start on January 1st 2024
- DRD6 Collaboration Meeting at CERN (9-11 April 2024)
 - https://indico.cern.ch/event/1368231/

DM/BSM

Inés Gil Botella @ PECFA July 2024

Higgs Factory

HL-LHC

Future hadron coll

Muon Collider

On-going R&D in e.m. calorimeters – DRD6

Crilin – CRystal calorImeter with Longitudinal InformatioN –

semi-homogeneous electromagnetic calorimeter based on Lead Fluoride Crystals (PbF₂) matrices where each crystal is readout by 2 series of 2 UV-extended surface mount SiPMs

High-density crystal:

need for increased layer numbers with space constraints

Speed response:

Cherenkov crystals, ensuring accurate and timely particle detection

Semi-homogeneous:

strategically between homogeneous and sampling calorimeters

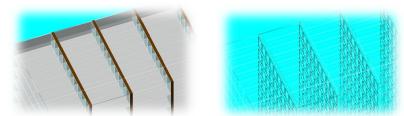
ightarrow able to exploit the strengths of both kinds

Flexibility:

able to modulate energy deposition for each cell and adjust crystal size

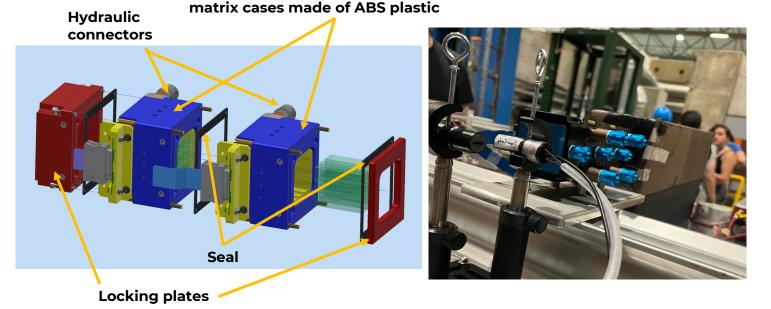
Compactness:

Unlike segmented or high granularity calorimeters it can optimize energy detection while staying compact


total ionising dose: ~1 kGy/year (100 krad) total neutron fluence: $10^{14} n_{1MeVeq}/cm^2/year$

2-layer 3x3-crystal Crilin prototype

Crilin, *JINST* **17** P09033



Results from a 3 layers prototype of test beams

For the expected radiation level **the choice for SiPMs was 10 μm Hamamatsu SMD** for minor dark current contribution

- **Time resolution**: < 40 ps for single crystals, for E_{dep} > 1 GeV
- Radiation resistance:

PbF₂(PWO-UF) robust to > 35(200) Mrad SiPMs validated up to $10^{14} n_{1MeV}/cm^2$ displacement-damage eq. fluence

Crystal	PbF ₂	PWO-UF
Density [g/cm ³]	7.77	8.27
Radiation length [cm]	0.93	0.89
Molière radius [cm]	2.2	2.0
Decay constant [ns]	-	0.64
Refractive index at 450 nm	1.8	2.2
Manufacturer	SICCAS	Crytur

IRRADIATION STUDIES

- PbF₂:
 - after a TID > 350 kGy
 no significant decrease in
 transmittance observed
 - Transmittance after neutron
 irradiation showed no deterioration
- **PbWO₄-UF:** for first layer
 - after a TID > 2 MGy no significant decrease in transmittance observed

On-going R&D in hadronic calorimeters – DRD6

MPGD-based hadronic calorimeter, Nucl. Instrum.Meth. A 1047 (2023) 167731

MPGD-HCAL

based on **resistive Micro-Pattern Gaseous Detectors** as **readout layers for a sampling hadronic calorimeter**

MPGD features:

- cost-effectiveness for large area instrumentation
- radiation hardness up to several C/cm²
- discharge rate not impeding operations
- rate capability O (MHz/cm²)
- high granularity
- time resolution of few ns

Past work:

• **CALICE** collaboration: a sampling calorimeter using **gaseous** detectors (RPC) but also tested MicroMegas

one of the goals of such R&D is to

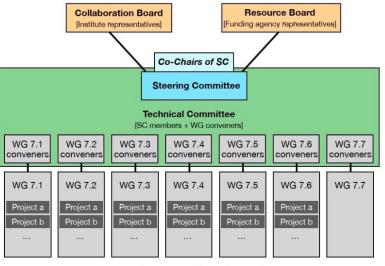
choose the best technology for

calorimetry @ Muon Collider

• **<u>SCREAM collaboration</u>**: a sampling calorimeter combining RPWELL and resistive MicroMegas

R&D plan \rightarrow systematically **compare** three MPGD technologies for hadronic calorimetry: resistive MicroMegas, μ RWELL and RPWELL, while also investigating **timing**

Micromegas MESH (bulk technique (MM) Top layer superimposed on the vias DLC2 Internal lay One connection to ground through via from top and internal DLC laver Top Copper (5 **JRWELL** Polvimic DLC layer (<0.1 µ o~10÷100 MO/ Pre-preg RPWELL


DRD7: Electronics

DRD7 workshop 9-10 September 2024 at CERN https://indico.cern.ch/event/1436991/overview

- Full proposal received by 29 February 2024; approved in June 2024
- Objectives: Carry out strategic R&D in electronics, fulfilling DRDTs, Coordinate cross-European access to technologies, tools and knowledge, Interface with other DRDs (No orthogonal "Service-Provider" for other DRDs)
- Organization: 19 countries, 68 institutes
 - ✦ Somehow CERN-centric at present, e.g. 9/19 WG conveners
 - ★ <u>1st workshop</sub> happened in March, <u>2nd workshop</u> 25-27 Sept 2023, 1st collaboration meeting planned 9-10 Sept 2024</u>

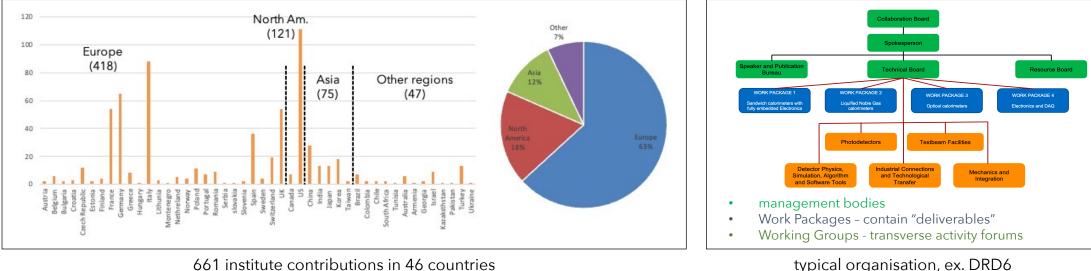
		DRDT 7.1	Advance technologies to deal with greatly increased data density
	Electronics	DRDT 7.2	Develop technologies for increased intelligence on the detector
		DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques
			Develop novel technologies to cope with extreme environments and required longevity
		DRDT 7.5	Evaluate and adapt to emerging electronics and data processing technologies
		WG 7 6 C	Complex imaging ASICs and technologies

- WG 7.6 Complex imaging ASICs and technologies
- WG 7.7. Transversal Tools and Technologies

Nomenclature to be adapted

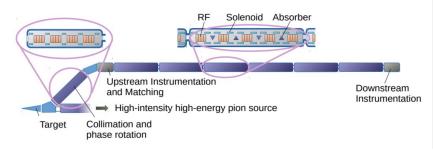
111

DRD8: Integration


- Initial TF convenors did not continue as proposal preparation team
- New proponents had to be searched for, which were found by the group around the "Forum on Tracker Mechanics" workshop organizers
 - ✦ Burkhard Schmidt (CERN) and Andreas Mussgiller (DESY)
- Community survey replied that there is an interest in going forward
- <u>Community Meeting</u> on December 6, 2023
- Lol received by end of February 2024 with the aim to write a full proposal by the end of this year
 - ✦ LoI does not cover all DRDTs, as they are quite diverse
 - Focus on vertex detector mechanics and cooling
 - ✤ 22 institutes in 7 countries, 32 FTEs at the moment

- DRDT 8.1 Develop novel magnet systems
- DRDT 8.2 Develop improved technologies and systems for cooling
- DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.
- **DRDT 8.4** Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects

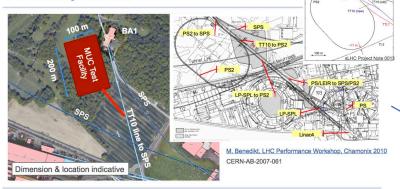
DRD collaboration facts


- Preamble referring to the <u>ECFA Detector R&D Roadmap</u>
- DRD collaboration implementation •
 - referring to CERN hosting framework
 - work organisation to fulfil the ECFA detector roadmap DRDTs
 - community building
 - establishing areas of collaborative effort / common projects
 - balance achieved in community aspirations and R&D roadmap priorities
 - outreach, training and early career efforts

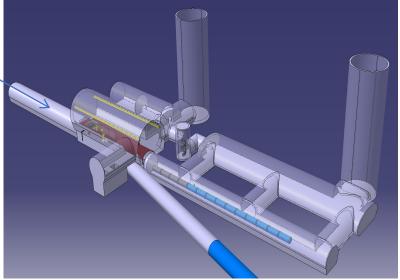
summed over DRD1, DRD2, DRD3, DRD4, DRD6 and DRD7

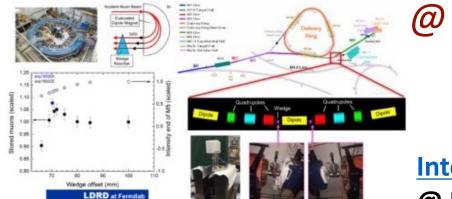
still an ongoing process, also in preparation of MoUs

Demonstrator Facility: a crucial step forward!


Planning **demonstrator** facility with muon production target and cooling stations

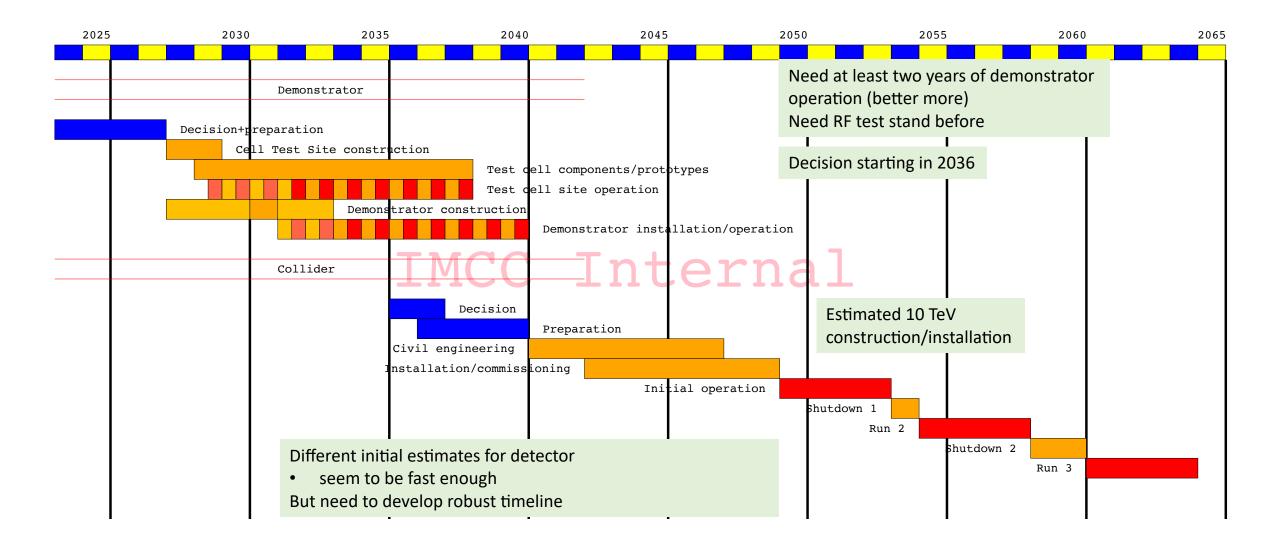
Suitable site exists on CERN land and can use PS proton beam


• could combine with **NuStorm** or other option

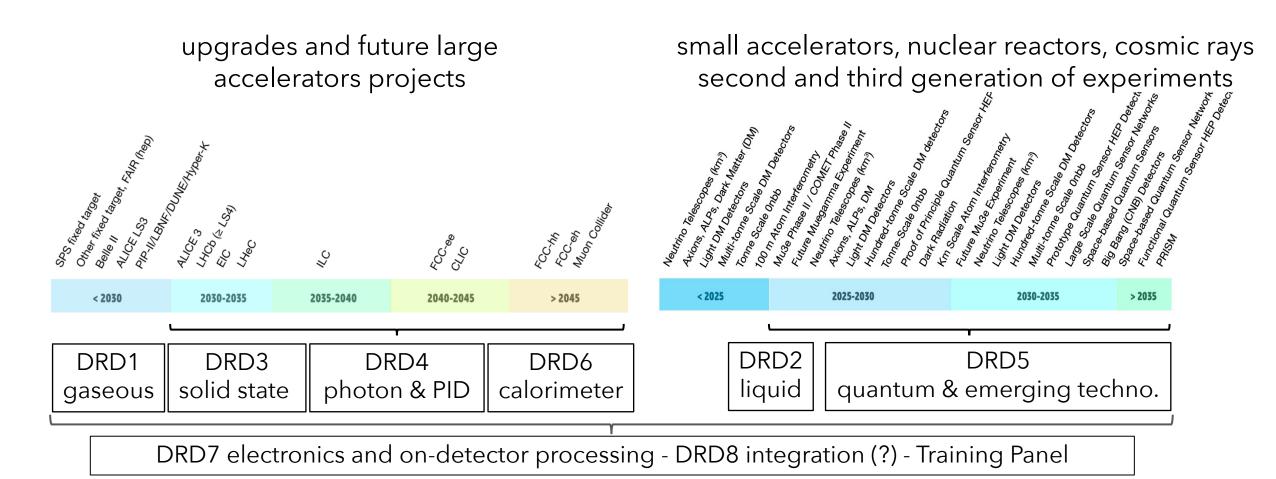

Possibility around 1110

FNAL

@ CERN



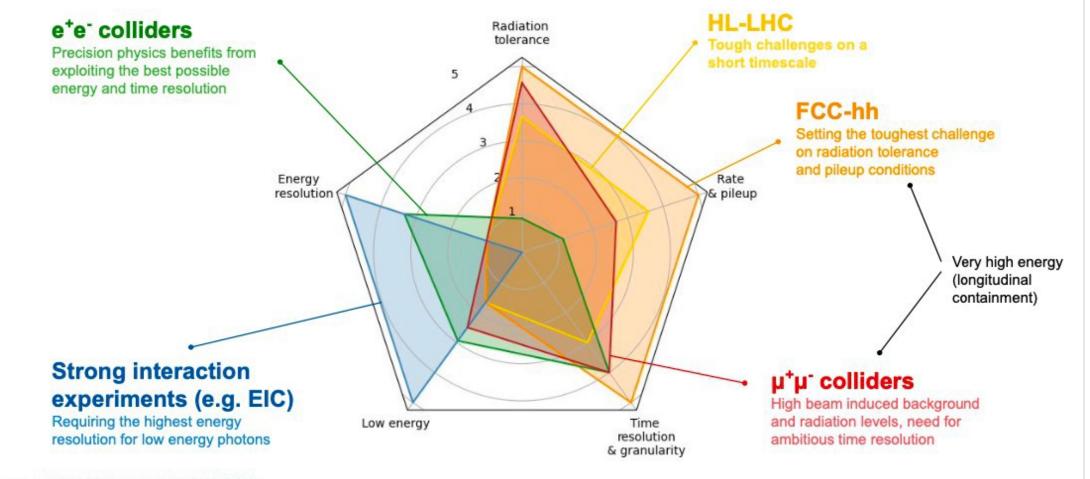
International Muon Collider Collaboration: Demonstrator Workshop


@ FNAL October 30 – November 1, 2024

Tentative Timeline (Fast-track 10 TeV)

Basis to start the discussion, will be reviewed this year

HEP projects for Detector Research & Development



Strategic DRD programmes cover evolving TRLs* between 3 to 6

Didier Contardo @ ICFA Seminar 2023

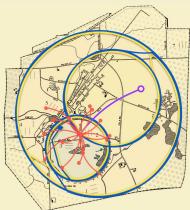
* <u>Technology Readiness Level</u> defined by NASA, low TRL < 3 also often referred as "blue sky", TRL > 6 are experiment specific engineering ** Planning of projects is for physics start at the time of the roadmap, end of strategic R&D must consider project engin., constr. and instal. time

Crucial synergies

Inspired from https://indico.cern.ch/event/994685/

Final remarks and next steps

 A key message ALWAYS is to sustain the careers of R&D experts: "Attract, nurture, recognise and sustain the careers of R&D experts"

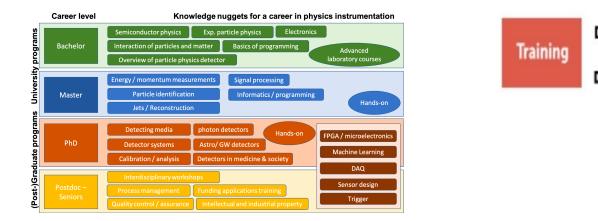

No instrumentation \rightarrow no "Physics" reach

 To get people engaged, in particular the Early career scientists, it is important also to get intermediate experimental setups/goals and synergies where the new technologies in their infant status may be tested

➔ Muon Collider Demonstrator with physics cases

- ECFA Detector Panel is planning to prepare an input document to be submitted end of March 2025
 → IMPORTANT to be on board as Muon Collider (material and draft input by end-2024)
 → prepare incremental update of the ECFA Detector R&D Roadmap as needed (by ESPPU conclusion)
- The Update to the European Strategy for Particle Physics is the opportunity to revise previous work and launch collaborations on new studies

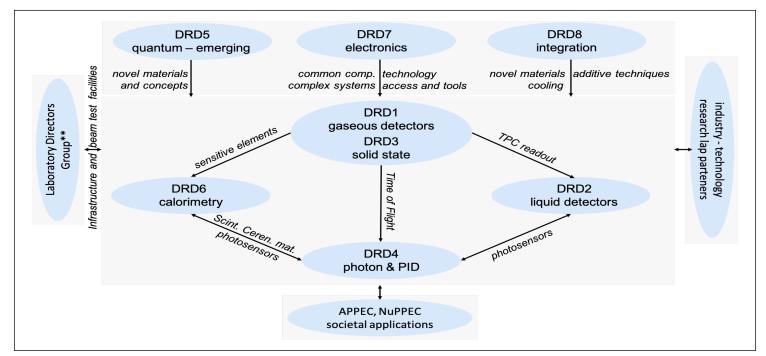
We have a great future ahead where we can exploit expertise from on-going project, new collaboration for near/mid-term R&Ds and ingenuity for future ideas!



Thanks to many teachers detector & accelerator physicists, technicians and engineers, students **old and new friends**

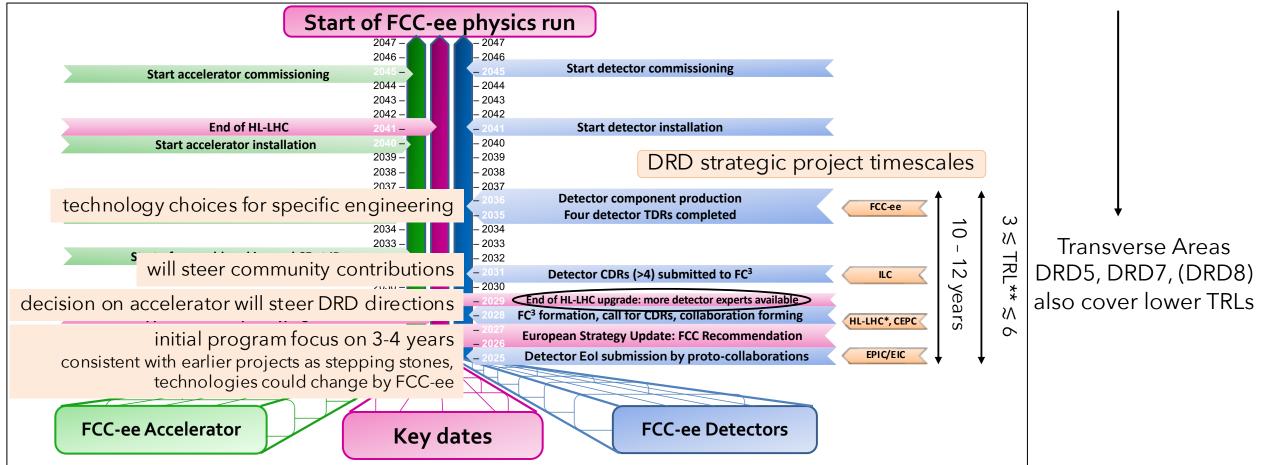
Thanks to you all for the attention aiming for new collaboration ahead and questions

Training



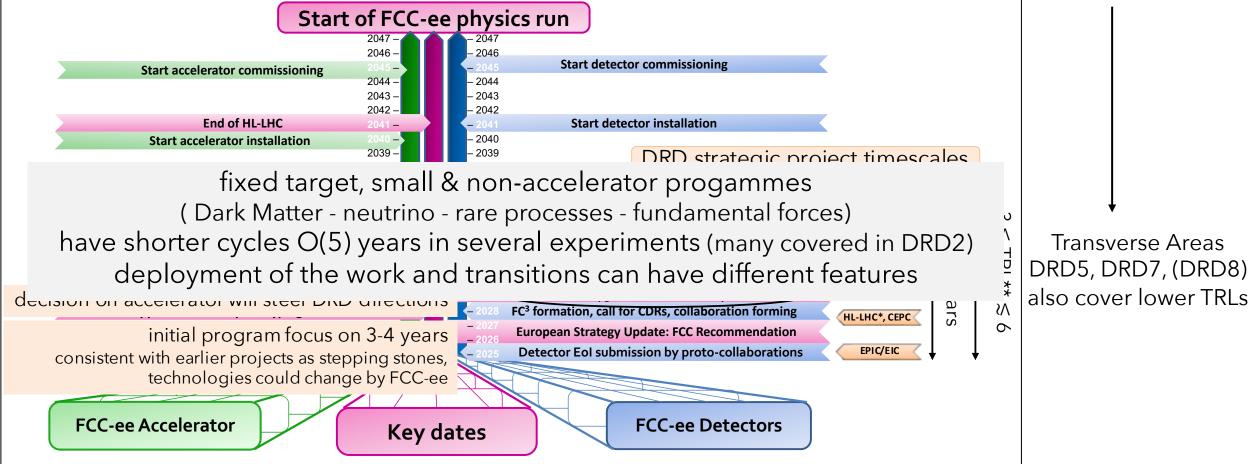
- One of the Recommendation of the detector R&D roadmap stresses the need to train and maintain a work force in instrumentation for Particle Physics, targeting primarily graduate students and Early Career Researchers (ECR).
 - Increase participation of young scientists in leading-edge instrumentation R&D
 - foster growth of future HEP instrumentation experts who can compete for permanent positions, mandatory to the success as well as the long-term health of experimental particle physics as a whole.
- ECFA training panel (link) has been setup (chairs: E. Garutti and J. Collot) with Goals:
 - Enhance the **synergies** between existing training programmes
 - creation of a European master's degree program in HEP instrumentation

DRD interfacial areas


- Cross-DRD aeras (when DRDx can benefit from DRDy progress)
 - typical ex. 1 implementing new sensitive components provided by other DRDs in DRD6
 - typical ex. 2 implementing new electronics components provided DRD7 in any other DRDs
- Interface to other national or international programs (ex. US CPAD, AIDAInnova...)
- Relation and collaboration with industrial or academic partners & technology access
- Relation and collaboration with other scientific disciplines
- Availability of infrastructure for characterisation in conjunction with LDG*
- > Mechanisms to ensure coherence and synchronization of the above aspects

* CEA/IRFU-France, CERN-EU, CIEMAT-Spain, DESY-Germany, IJCLab-France, LNF-Italy, LNGS-Italy, Nikhef-Netherlands, PSI-Switzerland, STFC/Daresbury-UK, STFC/RAL-UK ³⁹

Topics towards the EDP input content : DRD programme deployment


- Scientific outcome expected in the 1st phase of the R&D programs (3-4 years)
 - evaluation of technology areas performance potential
 - technical solution for medium term strategic projects; consider transitions to specific engineering (TRL ≥ 6)
- Preparation of 2nd R&D phase
 - ex. longer term collider term FCC-ee project; consider opportunities for new technology (TRL ≤ 3)

** "blue sky" TRL \leq 3 and speific experiment engineering TRL \geq 6 at boundaries of DRD coverages

Topics towards the EDP input content : DRD programme deployment

- Scientific outcome expected in the 1st phase of the R&D programs (3-4 years)
 - evaluation of technology areas performance potential
 - technical solution for medium term strategic projects; consider transitions to specific engineering (TRL ≥ 6)
- Preparation of 2nd R&D phase
 - ex. longer term collider term FCC-ee project, consider opportunities for new technology (TRL ≤ 3)

** "blue sky" TRL \leq 3 and speific experiment engineering TRL \geq 6 at boundaries of DRD coverages

ECFA Detector Panel

- represents the community in the CERN DRD collaboration framework
- help organise discussion of the common issues* through EDP - DRD Collaborations Managers Forum (<u>mandate</u>)
- advise DRDC on priorities wrt the Detector R&D roadmap
- helps plan future updates to the Detector R&D roadmap

New membership approved at this meeting Felix Sefkow (DESY) replace Phil Allport as EDP co-chair Jens Dopke (RAL) joining as mechanics & integration expert... and as EDP secretary Susanne Kuehn (CERN) replacing Doris Eckstein as SSD expert

Didier Contardo @ PECFA July 2024

Co-Chairs: Didier Contardo (IP2I Lyon) and Felix Sefkow (DESY) Scientific Secretary: Jens Dopke (RAL)

- Gaseous Detectors: Silvia Dalla Torre (Trieste)
- Liquid Detectors: Inés Gil Botella (CIEMAT, Madrid)
- Solid State Detectors: Susanne Kuehn (CERN)
- PID & Photon Detectors: Roger Forty (CERN)
- Quantum and em Tech: Steven Hoekstra (Groningen)
- Calorimetry: Laurent Serin (IJCLab)
- Electronics: Valerio Re (Bergamo)

• Mechanics & integration (DRD8) Jens Dopke (RAL) Ex Officio:

- Thomas Bergauer (DRDC)
- Paris Sphicas (ECFA Chair)
- Ian Shipsey (ICFA Detector Panel)

Observer:

- Aldo Ianni (APPEC, LNGS),
- Eugenio Nappi (NuPECC, Bari)

also members of DRDC

web page

* ex. cross-DRD areas, interfaces to: other R&D programs; ApPEC and NuPEC ; projects concept groups (of strategic physics programmes identified by ESPP)...

European Strategy on Particle Physics

- Strategy first defined in 2006
- Update in 2013 to launch the HL-LHC decision
- Update in 2020 to envisage post-HL-LHC times:
 - Europe, together with its international partners, should investigate the technical and financial feasibility of **a future hadron collider at CERN** with a centre-of-mass energy of at least **100 TeV** and with an **electron-positron Higgs** and electroweak **factory** as a possible **first stage**.
 - The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A **roadmap should prioritise the technology**, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. **Deliverables for this decade should be defined** in a timely fashion and coordinated among CERN and national laboratories and institutes.
 - Successful completion of High-Luminosity LHC must remain key focus

43

