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Neutrino factories in 2000
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“ v beam to near detector

and we knew that sin” 26,5 is small. . .
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Traditional beam

Neutrino beam from m-decay

Sour ce Oscillation Detection
CC

Vﬂ4> 1)
V,u<:
>99% Ve% e
K
<1%

CcC
¢ ——

e

 primary v, flux constrained to 5-15%

* 1, component known to about 20%

 anti-neutrino beam systematically different —
large wrong sign contamination

* 1, difficult to distinguish from NC events
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Neutrino factory beam

Oscillation Detection
CC —

H

This requires a detector which can distinguish g
from p~ = magnetic field of around 1T

* beam known to %-level or better
* muon detection very clean

* multitude of channels available, including v

* Event rate scales Eﬁ = very long baselines
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Neutrino factories a decade ago
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MC concept 2024

Intrinsic v beams:
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Interim Report IMCC 2024

When will what beam be available?

Are there other places to pick off?

Can we add dedicated straights/storage rings?

10-100 GeV fixed target program for nuclear physics?
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Reactor neutrinos JUNO
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JUNO 2022
Electron antineutrinos, 6 year nominal run.

We will get there around early 2030s
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Long-baseline oscillation T2HK
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Statistics only
Improved syst. (v./V, xsec. error 2.7%)
s T2K 2018 syst. (v/v, xsec. error 4.9%)
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sin“(6,;) =0.0218 sm7(H,;) =0.528 |[Amj3,| = 2.509E-3

T2HK 2022
Muon neutrinos, 10 year nominal run.

We will get there around late 2030s/early 2040s
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Long-baseline oscillation DUNE
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DUNE TDR 2020
Muon neutrinos, 600 MW kt yr nominal run

We will get there around early 2040s
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15-20 years from now

» JUNO will have determined Am?Z, and sin” 0} to

better

than 0.5%

« T2HK/DUNE will have determined 0 to 5—10°

* (Global fits will constrain the 3-flavor oscillation
framework at the %-level

* Very |

1ttle information on v--

T2HK anc

| DUNE detectors are NOT suitable for

muon decay beams

T2HK and DUNE are enourmous facilities and the
neutrino community likely would want to keep using

them — BUT systematics will have to improve.
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Quasi-elastic scattering

Nuclear effects will make some non-QE events appear
to be like QE events = the neutrino energy will not be
correctly reconstructed.
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(a) Expected events at the far detector (b) Expected events at the near detector

Coloma er al. 2013

P Huber — VT-CNP - p. 12



Impact on oscillation

v, — v, 1n a T2K-like setup with near detector.

X2/dof = 47.64/16
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6023(°]

(a) No calibration error

Coloma et al. 2013

5% cal. error

x2,./dof = 20.95/16

38 40 42 44 46 48 50 52
623[°]

(b) 5% calibration error
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Missing energy

Yo In elastic scattering
Perfect fec, Cal a certain number of

=emee 80% Epnigs x°/dof=0.4/52

 50% e, ldoi-26/52 neutrons iS maé_e

______ 20% Eniss  x?/dof=7.5/52

Neutrons will Dbe
largely 1nvisible even
10 contours (2 d.o.f.) in a liquid argon TPC

Wide Band, L=1300 km

= missing energy

Ankowski etr al., 2015
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Known unknowns

All studies somehow use a table like this

normalization of ND — 5%

normalization of FD — 5%

energy calibration of ND (e-like) — 2.5%
energy calibration of ND (u-like) — 2.5%
energy calibration of FD (e-like) — 2.5%
energy calibration of FD (u-like) — 2.5%
v—beam, v, —flux normalization — 15%
v—beam, v, —flux tilt — 15%

default systematics

00 N O OB~ W N =

v—beam, v, —flux normalization — 15%

y—beam, v, —flux normalization — 15%

v—beam, v,,~flux normalization — 15%

v-beam, 7, ~flux normalization — 20%

v—-beam, v,—flux tilt — 20%

v-beam, v, —flux normalization — 20%

beam, ve—flux normalization — 20%

v-beam, v, —flux normalization — 20%

total v, cross section ® efficiency — 10%

total v, cross section ® efficiency — 10%

total v, cross section ® efficiency — 10%

total v, cross section ® efficiency — 10%

ratio of QE/NQE cross sections — 20%

NC cross section ® efficiency in FD — 10%

ratio of v/v NC cross sections ® efficiencies in FD — 5%

NC cross section ® efficiency for v—beam in ND - 10%

NC cross section ® efficiency for v—beam in ND — 10%

26 error on muon miss—identification in ND for v—beam — 10%
27 error on muon miss—identification in ND for v—beam — 10%

0, /0

sin®26;3=0.03

GLoBES 2007

0.19
ocp [n]
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Two great philosophers

“[...] that 1s to say we know there are some things we
do not know. But there are also unknown unknowns
— there are things we do not know we don’t know.”

Donald Rumsfeld

“In theory there 1s no difference between theory and
practice. In practice there 1s.”

Yogi Berra
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Theory and cross sections

Theory 1s cheap, but multi-nucleon systems and their
dynamic response are a hard problem and there 1s not
a huge number of people working on this. ..

Without being anchored by
data, any result will be based
on assumptions and uncon-
trolled approximations.

Requires a novel precision, high-luminosity neutrino
source = muon decay at a few GeV
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nuSTORM in numbers

Beam flux known to better than 1%, 5 GeV muons
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1,174,710 1,002,240
1,817,810 2,074,930
3,030,510 2,519,840
5,188,050 6,060,580
F p—

14,384,192 6,986,343
41,053,300 19,939,704

CC events

L/e

s

nuSTORM collab. 2013

DUNE’s NDGAr could be an excellent detector.
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What this buys you

CKM 2011 -

LBNF (2E7s p.a.)
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Oscillations and the MC

A full-scale neutrino factory i1s about the same level of
effort as DUNE and would improve error bars by a
factor of few relative to the current program.

e Neutrino community is focused on DUNE/T2HK
for the next 1-2 decades.

e Current detectors can not easily accept a muon
based beam.

* Low-energy muon storage ring for cross section
precision program to control systematics 1s
needed.

* Time-scale 1s right: MC demonstrator ~ end of
current oscillation program
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High energy neutrinos
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Interim Report IMCC 2024

Fantastic high energy neutrino source
Straightfoward very small detector
Can this sustain 2500 neutrino phycisists?
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High-energy

Accelerator v
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Based on a few thousand events.

Astro v
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Tridents

—— Coherent

Incoherent

100
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Coherent Scattering B OG 100GeV

NF@1.5TeV
B NF@5TeV

7 tridents not accessible
with DUNE

G. Chauhan, PH, 1n progress
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Summary
* Long-baseline oscillation will be done using
conventional beams for the next 20 years

* Currently, no obvious upgrade path for
DUNE/T2HK to use muon-decay beams.

e Muon storage ring at few GeV to improve
neutrino cross sections for DUNE/T2HK. Fits
timeline of both communities.

e TeV neutrino fixed-target program very well
motivated, but overall small-scale.
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Way forward

Muons at all energies are great neutrino sources —
number of useful muon decays matters greatly!

Potential synergies are large — to realize them both
communities need to talk with each other on a regular
basis.

What is the best format for these interactions?
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