

Cluster shape analysis of beam-induced background in the Muon Collider Tracking Detector

Simone Pagan Griso¹, <u>Angira Rastogi¹, Chris Sellgren², Sara Shinde³</u>

The muon collider stands as one of the most promising prospects for next-generation high-energy particle physics experiments. However, it presents significant challenges, particularly in managing the beam-induced background (BIB) resulting from various muon decay sources. Currently, several mitigation strategies are under investigation, such as leveraging timing informance. On top of that, we are also exploring dedicated filtering based on the cluster shapes as well as hit multiplicity response from the realistic digitization to reject some of the in-time BIB from physics collision events.

Fermilab

Inaugural US Muon Collider Meeting, FNAL, August 7-9, 2024

¹Lawrence Berkeley National Laboratory, ²UC Santa Barbara/NYU,³University of Cincinnati

Abstract

