

Timing detectors R&D directions

Artur Apresyan

Inaugural US Muon Collider Community Meeting August 8, 2024

Muon Collider

• An incredible machine with unparalleled physics potential

Challenges for Detectors at Muon Colliders

- Timing of BIB backgrounds is very different
 - Detectors with good timing to eliminate BIB
 - Tracker : need ~20-40 ps
 - Calorimeter and muon : need ~100 ps

Precision timing

- Traditionally in collider experiments we measure very well

 Position, charge and energy of particles
- Next-gen detectors will have high granularity also in time
 - Tracker, calorimeter, muon detectors, and L1 trigger
 - Move towards full 5D Particle Flow
- Precision timing information will radically change the capabilities of future experiments
 - Improve event reconstruction, Level-1 trigger, and new techniques in searches for New Physics

Cutting edge detector R&D is needed!

5 8/7/24 A. Apresyan I Inaugural US Muon Collider Community Meeting

Synergistic developments across many fields

Lidars and Automotive

Coulomb explosion imaging

Bio Imaging and Life Science

Astro-particle physics

Fast timing applications

Quantum science and cryptography

Advanced manufacturing

Fusion Energy Research

Technologies for precision timing detectors

- Complex systems need to be developed and implemented
 - 1. Rad-hard detecting **sensor** capable of high precision timing
 - 2. High precision, rad-hard, and low-power readout electronics
 - 3. Low noise detector system with high fidelity precision **clock**
 - 4. Integration into trigger and event reconstruction
 - 5. Continuous monitoring and calibration

Technologies for precision timing detectors

- Active area of R&D for future collider experiments
 - One of the priority areas highlighted in DOE BRN, European Strategy for Particle Physics, and Snowmass
- Optimized solutions for various applications
 - Trackers: high granularity and low mass
 - Calorimeters: dense volume interspersed with fast detecting medium
 - Muon detectors: fast gas detectors with low mass

🛟 Fermilab

Timing resolution

- Particles passing through medium generate signals which are then measured to *time-stamp* the arrival
 - Depending on detector type (tracker, calorimeter) the dominant effects that impact resolution slightly vary
- The goal is to design sensors that deliver the best timing information, while optimized for a specific application
 - Let's walk through an example of charged particle passing through silicon sensor

Signal attributes

- Signal of MIP passing through a silicon detector depends on the thickness of the depletion zone and dE/dx
- The noise in a silicon detector system depends on various parameters: geometry of the detector, the biasing scheme, the readout electronics, etc.

🌫 Fermilab

10 8/7/24 A. Apresyan I Inaugural US Muon Collider Community Meeting

Time resolution components

- Optimize detector timing resolution
 - Increase Signal/Noise to minimize jitter
 - Fast rise time to reduce impact of electronic noise: thinner sensor
- Non uniform charge deposition:
 - Landau fluctuations: cause fluctuations in signal shape and amplitude
 - Effect is reduced in thinner sensors

Time resolution components

- Once the sensor medium is optimized need to design the rest of the system
 - Front-end Readout Chip (ROC) that can optimally extract the timing information available from the sensor
- Power and overall system design impose constraints on the ROC precision

Timing resolution

• Putting together various components

$$\sigma_t^2 = \sigma_{Landau}^2 + \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2$$

- Ideal detector components
 - Fast signals with large S/N ($\sigma_{jitter} = t_{rise}/(S/N)$)
 - Thin sensors to minimize σ_{Landau}
 - Stable and uniform signals across sensor area
 - Optimized electronics to reduce time-walk and clock jitter
 - Electronics with low power consumption
- Radiation damage complicates things, so all these need to be also resilient to high fluences in hadron colliders

Example: precision timing for CMS in HL-LHC

- CMS Phase 2 Upgrade is the Gen-0 approximation towards 4D detectors
 - In ECAL barrel: new electronics to achieve ~30 ps resolution for photon/electron
 - In HGCal: design to achieve ~50 ps timing resolution per layer in EM showers, multiple layers can be combined
 - MIP timing detector: cover up to lηl<3.0 to time stamp charged particles in the event: ~30 psec timing resolution
 - LYSO + SiPM layer in the barrel,
 - Low Gain Avalanche Detector (LGAD) layer in the endcap

Barrel Timing Layer

- Small SiPM cells: fast readout, robust vs. magnetic field/radiation and low power consumption.
- LYSO crystals as scintillator with an excellent radiation tolerance and fast rise and decay times.
- Time resolution of 35 ps at the beginning of lifetime and 60 ps by the end.

Endcap Timing Layer

LGAD Wafer

- Breakthrough development of last decade
 - High field in gain region ~ 300 kV/cm, causes avalanche
 - − High gain \rightarrow high signal \rightarrow faster rise \rightarrow smaller "jitter"
- Sensors demonstrate
 - Efficiency is 100 % inside pixels
 - Signal size uniform across area

Endcap Timing Layer

LGAD Wafer

- Breakthrough development of last decade
 - High field in gain region ~ 300 kV/cm, causes avalanche
 - − High gain \rightarrow high signal \rightarrow faster rise \rightarrow smaller "jitter"
- Sensors demonstrate
 - Efficiency is 100 % inside pixels
 - Time resolution 30-40 ps up to 1.5x10¹⁵ n/cm²

Calorimeters with timing

- ECAL with PbWO₄
 - High Light Yield ~100 photons MeV
 - Readout by fast APD
- New electronics for HL-LHC to take advantage of the fast signals to achieve <50 ps time resolution

Calorimeters with timing

- Several 5D-calorimeters (E, x, y, z, t) in construction or R&D
 CALICE R&D, CMS HGCAL, ALICE FoCal
- New front-end processing capabilities (e.g ECON) with AI
 - Radiation hardness to maintain 5D performance
 - Edge processing to reduce data flow

Calorimeters with timing

- First Particle Flow calorimeter in experiment
 - Hexagonal modules based on Si sensors in high-radiation regions
 - Scintillating tiles with SiPM readout in low-radiation regions
- Huge signals from showers: timing for all cells with Q > 12 fC
 - $p_T = 5 \text{GeV}$ for e/γ : 10-15ps
 - $p_T = 5 \text{ GeV for } K_{0L}$: 30 ps

Active R&D on new directions

- A snapshot of areas with active R&D
 - AC-LGAD: excellent position AND timing resolution for MIPs
 - Monolithic detectors (HV/HR-CMOS) with embedded readout
 - Specially designed sensors to provide track position, angle and timing
 - Diamond detectors, 3D sensors, thin film detectors
- Common challenges for many technologies:
 - Services, cooling, low-power ASICs

21 8/7/24 A. Apresyan I Inaugural US Muon Collider Community Meeting

AC-coupled LGADs

- Ongoing R&D to eliminate dead area
 - Simultaneously improve position resolution via charge sharing
- Active R&D at different manufacturers
 - 100% fill factor, and fast timing information at a per-pixel level
 - Signal is still generated by drift of multiplied holes into the substrate and AC-coupled through dielectric

🛠 Fermilab

Long AC-LGAD strip sensors performance

- Position reconstruction with ratio of amplitudes
 - Sensor provides 100% efficiency across surface
- Signal sharing: measure position based on ratio in neighbors Achieve 15-20 μ m resolution in 10 mm strips with 500 μ m pitch
- Excellent time resolution
 - Achieve 30-35 ps for 10 mm strips

23 8/7/24 A. Apresyan I Inaugural US Muon Collider Community Meeting

Towards better time resolution

- How do you get better time resolution?
 Thinner sensors to decrease Landau contribution
- AC-LGAD from HPK with 20, 30, 50 µm thickness
 Almost fully metallized, optimized for timing performance
- Uniform time resolution across full sensor area
 - 25 ps for 30 μm thick sensor, 20 ps for 20 μm thick sensor

LGADs with SiC sensors

- Wide Band Gap Materials offer potential advantages
 - Enhanced radiation resistance
 - Reduced cooling requirements \rightarrow reduced detector material mass
 - Increased commercial interest in wide band gap materials for power applications, HEP can benefit from these developments
- Several prototype runs recently produced

100 µm 4H-SiC PIN for MIPs (measurement)

- Early results look promising! Several new rounds of productions coming up

3D 4H-SiC Detector for MIPs (simulation)

🗕 🛟 Fermilab

Electronics needs

- The developments of the current CMS and ATLAS detectors are demonstrating the challenges of the electronics designs
 - For HL-LHC: pixel size is 1.3x1.3 mm², ~2 mW/pixel
 - Going to small pixels for muon colliders, e.g. 50x50 μm²: need to reduce power consumption per pixel by ~x680 to stay within cooling budgets similar to CMS/ATLAS timing detectors.
- Significant advancements will be needed:
 - More power/cooling budget,
 - Larger pixel size: AC-LGAD is one potential way to get precision position resolution with relatively large pixel sizes
 - Advanced detector concepts, new materials, AI/ML processing on chip
 - Advanced technology nodes (e.g. 28 nm) to reduce power consumption

Electronics for HL-LHC timing layers

- BTL TOFHIR
 - Minimize impact of DCR noise and pileup on time resolution
 - Cope with very high rate of low energy hits per channel
- ETROC and ALTIROC
 - Bump-bonded to LGAD, with 1.3 mm x 1.3 mm pads
 - Deal with small signal size (~6fC, at end of operation)
 - Power consumption < 1W/chip

ETROC for CMS

27 8/7/24 A. Apresyan I Inaugural US Muon Collider Community Meeting

Timing with Constant Fraction Discrimination (FCFD)

- A novel ASIC based on CFD for LGAD fast timing readout
 - Most timing ASICs need time-walk correction: each pixel timing needs to be corrected offline
 - CFD: No need for time-walk correction → directly get timemeasurement
- Two generations produced, targeting DC- and AC-LGAD
- Excellent performance : ~30 ps time resolution and no time-walk demonstrated in beam-tests

Monolithic sensors

- Monolithic sensors with embedded readout
 - Take advantage of electronics on top layer, good signal-to-noise
- Promise to be paradigm-shifting for next-gen detectors
 - MONOLITH project: several prototypes produced over last few years
 - Time resolution from ~13 ps at the center to ~25 ps at the edge
 - Cactµs project: two rounds produced
 - Time resolution around 65 ps demonstrated

Possibilities

- Advanced integration of technologies on the front-end
 - AI/ML on-chip to extract features for fast tracking and L1 triggering,
 - On-chip clustering to readout reduce data volume
 - Wireless communication between layers
 - Novel materials to design power-efficient data processing on front-end
- Extensive 3D integration
 - Very fine pitch possible
 - Layers of electronics for complex signal processing
 - Integrate different technologies, each optimized for separate tasks

3D-Integrated sensors

- Development of low-power, highly granular detectors in (\vec{x}, t)
 - Required to achieve breakthroughs across HEP, NP, BES, and FES
 - Adoption of 3D-integration has been cost-prohibitive in academia
- Supported by DOE "Accelerated Innovation in Emerging Technologies"
 - Joint development effort of SLAC, FNAL and LLNL
 - Tower Semi to develop process for 12" wafer production, with 28 nm TSMC
 - Design goal is to achieve position resolution ~5 μm , timing ~ 5-10 ps

AI/ML on the front-end: Smart Pixels

- Al embedded on a chip to:
 - Filter data at the source to enable data reduction
 - Take advantage of pixel information to enable new physics measurements and searches
- Data reduction through
 - Filtering through removing low p_T clusters
 - Featurization through converting raw data to physics information
- Combination of approaches can reduce data rate enough to use pixel information at Level 1

Smart Pixels Simulation

- Simulated charge deposition from pions
- Assume a futuristic pixel detector
 - 50x12.5 µm pitch
 - Time steps of 200 picoseconds
- Use ML due to complicated pulse shapes, and drift & induced currents
 - y-profile is sensitive particle's p_T
 - x-profile uncorrelated with p_T
- Classification goals
 - Keep high p_T clusters, decrease data bandwidth
- Reprogrammable weights for NN are implemented directly in the front-end

ROIC implementation

- 4 analog frontends, surrounded by a digital region
- Simulation: 13 x 21; Chip: 16 x 16

• Design expected to operate at $< 300 \,\mu\text{W}$

🗲 Fermilab

- Area < 0.2mm²
- The second chip has been submitted for tape out and received this spring, testing in progress

Exciting Opportunities

- Transformative Detector R&D
 - Emerging technologies and energy efficient solutions
 - Advances in quantum technologies and material science, AI/ML
 - Microelectronics to advance the stateof-the-art in detector technologies
- Huge potential to make a mark
 - Especially for young researchers!
 - Design, build, and collect data with these detectors!

Conclusion

- Unique requirements for the detectors for the muon collider require ambitious and exciting R&D
 - Simultaneous high position and timing requirements
 - Many innovative ideas are emerging
 - Promising directions with paradigm-shifting potential
- Exciting opportunities to get engaged in cutting edge detector R&D
 - Many active and funded programs on generic R&D
 - Collaborative efforts are the key for progress

