CP Violating Top Yukawa Coupling at the Future Muon Collider

Ian Lewis (University of Kansas)

Morgan Cassidy, Cosmos Dong, KC Kong, Jenny Zhang, Yajuan Zheng arXiv:2311.07645 [hep-ph] JHEP 05 (2024) 176

US Muon Collider Meeting August 8, 2024 Ian Lewis (University of Kansas)

1

Direct Probes of Top Yukawa

 Directly probe top Yukawa, need processes with a Higgs and top in final state.

• Representative diagrams:

 μ^+

- tth:

Dotted lines are VBF-like diagrams.

Cassidy, Dong, Kong, IML, Zhang, Zheng, JHEP 05 (2024) 176

US Muon Collider Meeting August 8, 2024

CP violating top quark Yukawa

• The typical angular parameterization is not gauge invariant, can cause spurious growth with energy.

$$\kappa_{htt} \frac{m_t}{v} h \bar{t} (\cos \xi + i \gamma_5 \sin \xi) t$$

• Use SMEFT to parameterize shift in a gauge invariant way:

 $\mathcal{L}_{htt,\text{SMEFT}} = -y_t \bar{Q}_L \tilde{\Phi} t_R - c_t \Phi^{\dagger} \Phi \bar{Q}_L \tilde{\Phi} t_R + \text{h.c.}$

$$= -m_t \bar{t}t - g_{htt} h \bar{t} \left(\cos\xi + i\gamma_5 \sin\xi\right) t$$
$$-\frac{3}{2} g_{htt} \frac{h^2}{v} \left(1 + \frac{h}{3v}\right) \bar{t} \left(\cos\xi - \frac{1}{\kappa_{htt}} + i\gamma_5 \sin\xi\right) t,$$

• Introduces a new 4-point interaction: t-t-h-h.

US Muon Collider Meeting August 8, 2024

 $g_{htt} \equiv (m_t/v)\kappa_{htt}$

Cross Section Dependence on Phase

- Dashed: VBF-like diagrams.
- Very different behaviour at different energies and for different diagram types.
 - S-channel type diagrams peak at the SM value
 - VBF style diagrams are at a minimum at the SM value.
- VBF style diagrams strongly dependent on CP violating phase at high energies.
- Can parameterize cross sections in terms of the CP-violating phase.
 - Cross sections are CP-even.
 - Can only depend on powers of $\cos heta$

US Muon Collider Meeting August 8, 2024

ξ bounds

- Benchmark luminosities:
 - ⁻ 1 TeV: 100 fb⁻¹
 - ⁻ 3 TeV: 1 ab⁻¹
 - ⁻ 10 TeV: 10 ab⁻¹
 - ⁻ 30 TeV: 10 ab⁻¹
- Signals added together and 90% b-tagging rate applied.
 - Sharp dependence on ξ at 10 TeV and 30 TeV provides strong constraints.
- Precision on top Yukawa in ttH comparable to previous results.

Forslund, Meade, arXiv:2203.09425

Projected 1σ (2σ) bounds on $ \xi $								
ε_b	$\sqrt{s} = 1 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	$\sqrt{s} = 30 \text{ TeV}$					
0.6	*	$ \xi < 15^{\circ} (23^{\circ})$	$ \xi < 8.6^{\circ} (14^{\circ})$					
0.7	*	$ \xi < 12^{\circ}(19^{\circ})$	$ \xi < 7.2^{\circ} (11^{\circ})$					
0.8	$ \xi < 67^{\circ}$ (*) or $ \xi > 114^{\circ}$ (*)	$ \xi < 10^{\circ} (16^{\circ})$	$ \xi < 6.2^{\circ} (9.3^{\circ})$					
0.9	$ \xi < 57^{\circ}$ (*) or $ \xi > 125^{\circ}$ (*)	$ \xi < 9.0^{\circ} (14^{\circ})$	$ \xi < 5.4^{\circ} (8.0^{\circ})$					

Cassidy, Dong, Kong, IML, Zhang, Zheng, JHEP 05 (2024) 176

US Muon Collider Meeting August 8, 2024

Thank You

US Muon Collider Meeting August 8, 2024

$\boldsymbol{\xi} \text{ bounds}$

Projected 1σ (2σ) bounds on $ \xi $								
ε_b	$\sqrt{s} = 1 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	$\sqrt{s} = 30 \text{ TeV}$					
0.6	*	$ \xi < 15^{\circ} (23^{\circ})$	$ \xi < 8.6^{\circ} (14^{\circ})$					
0.7	*	$ \xi < 12^{\circ}(19^{\circ})$	$ \xi < 7.2^{\circ} (11^{\circ})$					
0.8	$ \xi < 67^{\circ}$ (*) or $ \xi > 114^{\circ}$ (*)	$ \xi < 10^{\circ} (16^{\circ})$	$ \xi < 6.2^{\circ} (9.3^{\circ})$					
0.9	$ \xi < 57^{\circ}$ (*) or $ \xi > 125^{\circ}$ (*)	$ \xi < 9.0^{\circ} (14^{\circ})$	$ \xi < 5.4^{\circ} (8.0^{\circ})$					

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

- Comparing different b-tagging efficiency scenarios.
- Favorably compares to other direct probes at proposed future colliders:

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity	
$ lpha \lesssim 36^\circ \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	HL-LHC	3 ab^{-1}	
$ lpha \lesssim 25^{\circ} \ [2]$	$t\bar{t}(h \rightarrow \gamma \gamma)$ combination	HL-LHC	3 ab^{-1}	
$ lpha \lesssim 3^\circ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	$100 { m TeV} { m FCC}$	30 ab^{-1}	

Barman, et al., arXiv:2203.0817

US Muon Collider Meeting August 8, 2024

Properties of top quark Yukawa

- Beyond strength of coupling, interested in properties of the Higgs boson.
 - Is it a CP eigenstate?
 - Many measurements and studies on this.
 - Measure in couplings to tau's, gauge bosons, and top quark.
 - Different couplings can have different CP properties.
- Will focus on CP properties of the top Yukawa.
 - Will parameterize the top Yukawa as:

$$\kappa_t \frac{m_t}{v} h \bar{t} (\cos \xi + i \gamma_5 \sin \xi) t$$

- Older constraints from ATLAS: $|\xi|$ <0.75(43°) PRL 125 (2020) 061802
- Current constraints from ATLAS: $\xi = 11^{\circ} + 52^{\circ} 73^{\circ}$, $\kappa_t = 0.84^{+0.30}_{-0.46}$ arXiv: 2303.05974[hep-ph]
- Can be bounded very strongly by EDMs. Need direct measurements, though.

US Muon Collider Meeting August 8, 2024

EDM Constraints

- Very strong constraints on electron EDMs.
 - $|\xi| < 0.0014 (0.08^{\circ})$ Brod et al JHEP08 (2022) 294
- The strong constraints depend on electron-Higgs coupling.
 - Not observed yet.
 - If we allow it to change can greatly relax constraints.
 - Hence, direct measurement of CP-violating are important
- Similar results for neutron EDMs

Brod, Haisch, Zupan JHEP 11 (2013)

US Muon Collider Meeting August 8, 2024 Ian Lewis (University of Kansas)

Bahl et al EPJC82 (2022) 604

$$\mathcal{L}_{\text{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\text{SM}}}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) f H_f$$

Direct Searches at Future colliders

 Need processes with Higgs+top in the final state to directly probe top quark Yukawa

$$f_{CP}^{Hf\bar{f}} = \sin^2\left(\alpha^{Hf\bar{f}}\right)$$

Bounds on α at 95% CL ($\kappa_t = 1$)				Channel				Collider			Luminosity		
$ lpha \lesssim 36^\circ \ [1]$			dileptonic $t\bar{t}(h \to b\bar{b})$				HL-LHC			3 ab^{-1}			
$ lpha \lesssim 25^{\circ} \ [2]$				$t\bar{t}(h \to \gamma\gamma)$ combination			n	HL-LHC			3 ab^{-1}		
$ lpha \lesssim 3^\circ \ [1]$				dileptonic $t\bar{t}(h \to b\bar{b})$			10	$100 { m TeV FCC}$			30 ab^{-1}		
	Barman, et al., arXiv:2203.0817												
Co	ollider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$-\mu^+\mu^-$	target
E	(GeV)	14,000	$14,\!000$	100,000	250	350	500	$1,\!000$	$1,\!300$	125	125	3,000	(theory
C	(fb^{-1})	300	$3,\!000$	30,000	250	350	500	$1,\!000$	1,000	250	20	$1,\!000$	
H	ZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
H^{\cdot}	$\gamma\gamma$	_	0.50	\checkmark	-	_	_	_	_	0.06	_	_	$< 10^{-2}$
H	$Z\gamma$	_	~ 1	\checkmark	-	_	_	~ 1	_	_	-	_	$< 10^{-2}$
H	gg	0.12	0.011	\checkmark	_	_	_	_	_	_	_	_	$< 10^{-2}$
H	$t\overline{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	-	\checkmark	$< 10^{-2}$
H^{\cdot}	au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	—	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
H	$\mu\mu$	_	_	-	_	_	_		_	_	\checkmark	_	$< 10^{-2}$

Gritsan et al arXiv:2205.07715

US Muon Collider Meeting August 8, 2024

Measuring Top Yukawa at Muon Colliders

- Direct probe: top+Higgs production.
 - 3 TeV: $\Delta \sigma / \sigma = 61\%$
 - 10 TeV: $\Delta \sigma / \sigma = 53\%$

Forslund, Meade, JHEP08 (2022) 185

• Compare to combinations with HL-LHC.

Muon Collider Forum Report, arXiv:2209.01318

Muon Collider Higgs Precision Projections (SMEFT)

US Muon Collider Meeting August 8, 2024

Top Yukawa at 100 TeV

- Yellow: 10 ab⁻¹
- ⁻ Green: 20 ab⁻¹
- ⁻ Blue: 30 ab⁻¹
- $R_{\Gamma} = \Gamma_H / \Gamma_{H,SM}$

arXiv:1606.09408

US Muon Collider Meeting August 8, 2024

Importance of EFT

• Comparing SMEFT and dimension-4 angular parameterizations.

US Muon Collider Meeting August 8, 2024

CP Violating Variables

US Muon Collider Meeting August 8, 2024

Observables Sensitive to CP violation

- Cross section very sensitive to CP violating angle.
- However, to cross section is CP-even.
 - Observe a deviation, no guarantee that the there is true CP violation.
- Observables sensitive to CP violation are angles between different production and decay planes and/or triple products.
- Will investigate several process by process.
- Purely theoretical investigation with no decays.
 - It is likely that first indication of a CP violating phase at a muon collider with energies of 10 TeV or larger would be a change in the total cross section.
 - Measuring CP violating observables would be needed to verify source of change in cross section.

Typical CPV variables

 Create angles between production/decay planes or triple products.

Gritsan et al arXiv:2205.07715

US Muon Collider Meeting August 8, 2024

tth

• First, consider tth production.

$$\mu^+\mu^- \to t\bar{t}h_{\pm}$$

- Create an angle between the tt system and initial anti-muon-Higgs system. Bar-Shalom, Atwood, Eilam, Soni PRD53 (1996) 1162; Hagiwara, Yokoya, Zheng JHEP02 (2018) 180; etc.
 - Define the momentum of the planes:

$$\vec{p}_{t\bar{t}} = \vec{p}_t + \vec{p}_{\bar{t}}.$$

 $\vec{p}_{h\mu^-} = \vec{p}_h + \vec{p}_{\mu^-}$

• Create the observable, which is the angle between the planes:

$$\phi = \operatorname{sign}\left[\vec{p}_{t\bar{t}} \cdot (\vec{p}_{\mu^{-}} \times \vec{p}_{t})\right] \operatorname{arccos}\left[\frac{\vec{p}_{h\mu^{-}} \times \vec{p}_{\mu^{-}}}{|\vec{p}_{h\mu^{-}} \times \vec{p}_{\mu^{-}}|} \cdot \frac{\vec{p}_{t\bar{t}} \times \vec{p}_{t}}{|\vec{p}_{t\bar{t}} \times \vec{p}_{t}|}\right]$$

US Muon Collider Meeting August 8, 2024

CP violating observable for tth

• Clearly dependent on the sign of the angle.

- Sensitive to CPV

- Note: Show results for 3 TeV. As we will show, at this energy the CPV observables may need be necessary.
 - Cross section measurements turn out to be relatively insensitive to CPV at this energy.

US Muon Collider Meeting August 8, 2024

Asymmetry Parameter

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

• Define asymmetry to maximally utilize data:

$$A_{\phi} = \frac{\sigma(\phi > 0) - \sigma(\phi < 0)}{\sigma(\phi > 0) + \sigma(\phi < 0)}$$

US Muon Collider Meeting August 8, 2024

tbhv μ and tthv ν

Consider both processes:

$$\mu^{+}\mu^{-} \to t\bar{t}h\nu\bar{\nu} \equiv t\bar{t}h\nu_{\ell}\bar{\nu}_{\ell} \quad (\ell = e, \ \mu \text{ and } \tau),$$
$$\mu^{+}\mu^{-} \to tbh\mu\nu \equiv t\bar{b}h\mu^{-}\nu_{\mu} + \bar{t}bh\mu^{+}\bar{\nu}_{\mu},$$

- - Many more possible momentum to create observables.
 Bar-Shalom, Atwood, Eilam, Soni PRD53 (1996) 1162; The Higgs Hunters Guide, Gunion, He, PRL76 (1996) 4468
 For both cases, create a triple product between the final state top quark, Higgs, and initial state muon:

$$\mathcal{O}_{\mu ht} \equiv \frac{(\vec{p}_{\mu^-} \times \vec{p}_h) \cdot \vec{p}_t}{|\vec{p}_{\mu^-} \times \vec{p}_h| |\vec{p}_t|},$$

- For tbhy_u with consider process with top quark and anti-top quark separately.
 - For anti-top guark can define conjugate triple product.

$$\overline{\mathcal{O}}_{\mu ht} \equiv \frac{(\vec{p}_{\mu^+} \times \vec{p}_h) \cdot \vec{p}_{\bar{t}}}{|\vec{p}_{\mu^+} \times \vec{p}_h| |\vec{p}_{\bar{t}}|}.$$

US Muon Collider Meeting August 8, 2024

$tbh\nu\mu$ and $tth\nu\nu$

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

• CPV observables:

$$\mathcal{O}_{\mu ht} \equiv rac{(ec{p}_{\mu^-} imes ec{p}_h) \cdot ec{p}_t}{|ec{p}_{\mu^-} imes ec{p}_h||ec{p}_t|}, \qquad \overline{\mathcal{O}}_{\mu ht} \equiv rac{(ec{p}_{\mu^+} imes ec{p}_h) \cdot ec{p}_{ar{t}}}{|ec{p}_{\mu^+} imes ec{p}_h||ec{p}_{ar{t}}|}.$$

- Separation for signs of CP violating angle.
- tbhv μ and conjugate process have similar behavior.
- tbhv μ is more peaked near zero than tthvv
- Separation is relatively small, look at asymmetry parameters.

US Muon Collider Meeting August 8, 2024

Asymmetry Parameters

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

• Define asymmetry parameter:

$$A_{\mathcal{O}_{\mu ht}} = \frac{\sigma(\mathcal{O}_{\mu ht} > 0) - \sigma(\mathcal{O}_{\mu ht} < 0)}{\sigma(\mathcal{O}_{\mu ht} > 0) + \sigma(\mathcal{O}_{\mu ht} < 0)}$$

US Muon Collider Meeting August 8, 2024

Luminosity needed for Discovery

- Solid: Luminosity needed for 5σ discovery.
- Dashed: Luminosity needed for 2σ exclusion.
- All signals added together
 - Differences between energies due to differences in cross dependence on $\boldsymbol{\xi}$
- 90% b-tagging efficiency applied.
- Luminosity benchmarks:
 - 1 TeV: 100 fb⁻¹
 - ⁻ 3 TeV: 1 ab⁻¹
 - ⁻ 10 TeV: 10 ab⁻¹
 - ⁻ 30 TeV: 10 ab⁻¹

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

Cross Section Dependence

- At the SM values, strong destructive interference in $tth_{\nu\nu}$ and $tbh_{\mu\nu}$ at high energies.
 - Interference between Higgs radiated from gauge boson or top quarks.

$$\sigma_{tbh\mu\nu}(\xi = 0) = 0.31 \text{ fb}$$
 $\sigma_{tth\nu\nu}(\xi = 0) = 0.31 \text{ fb}.$
 $\sigma_{tbh\mu\nu}(\xi = \pm \pi) = 3.5 \text{ fb}$ $\sigma_{tth\nu\nu}(\xi = \pm \pi) = 43 \text{ fb}.$

- Similar effect in single top+Higgs production at the LHC.
 - Small SM cross section, but very large enhancement for wrong sign Yukawas.
- Total cross section very sensitive to CP angle.

$$\sigma(X) = C_X^4 \cos^4 \xi + C_X^3 \cos^3 \xi + C_X^2 \cos^2 \xi + C_X^1 \cos \xi + C_x^0$$

Process	\sqrt{s} (TeV)	C^0 (fb)	C^1 (fb)	C^2 (fb)	C^3 (fb)	C^4 (fb)
	1	0.511	0.0465	1.523	-	-
$t\bar{t}h$	3	0.233	0.0134	0.173	-	-
	10	0.0397	$1.48\cdot 10^{-3}$	0.0142	_	-
	30	$6.33 \cdot 10^{-3}$	$1.69\cdot 10^{-4}$	$1.53\cdot 10^{-3}$	-	-
	1	0.108	$8.29 \cdot 10^{-3}$	0.312	-	-
thhuu	3	0.122	-0.0717	0.0537	-	-
ισημν	10	0.537	-0.503	0.0967	-	-
	30	1.66	-1.57	0.224	-	-
	1	$2.57 \cdot 10^{-3}$	$-5.83 \cdot 10^{-4}$	$6.12\cdot 10^{-3}$	$-6.88 \cdot 10^{-4}$	$-1.70 \cdot 10^{-4}$
tībuī	3	0.184	-0.119	$4.25\cdot 10^{-3}$	-0.0468	$-4.50\cdot10^{-3}$
	10	2.92	-2.06	-0.468	-0.280	-0.0149
	30	23.9	-20.4	-2.52	-0.712	0.0446

Cassidy, Dong, Kong, IML, Zhang, Zheng, 2311.07645

Conclusions

- The possibility of a muon collider has gained renewed interest.
- Studied CP-violating top Yukawa at muon colliders.
 - At high energies, VBF diagrams dominate.
 - Due to strong destructive interference in SM, total rates very sensitive CP violating angle.
 - Studied several CP violating observables.
- Performed a collider study showing a pure rate measurement can be sensitive to a CP-violating top Yukawa.
 - Results at 10 and 30 TeV compare favorably to other direct tests at future colliders.
- Once a discovery is made, will need to verify that this is from CP violation.
 - Investigating different observables that could give confirmation of a change of rate comes from CP-violation
- At a 3 TeV muon collider, rate measurements insensitive to a CP violating angle.
 - True CP violating observables may be needed to find a CP-violating top Yukawa at this energy.
- At energies above 30 TeV, $log(E^2/M_W^2)$ enhancement from VBF becomes very large
 - Need to use EW pdfs Chen, Han, Tweedie, JHEP 11 (2017) 093; Ruiz, Costantini, Maltoni, Mattelaer, 2111.02442; Han, Ma, Xie, 2203.11129; etc. etc.

US Muon Collider Meeting August 8, 2024