Dark Matter Phenomenology in 2HDMS in the light of 95 GeV excess

Juhi Dutta

University of Oklahoma

based on arXiv: 2308.05653 (Accepted to EPJ C) and ongoing work

with Jayita Lahiri, Cheng Li, Gudrid Moortgat-Pick, Sheikh Farah Tabira, Julia Anabelle Ziegler (DESY, U.Hamburg)

Inaugural US Muon Collider Meeting, Fermilab, USA.

August 9, 2024

Motivation

- Dark matter constitutes about 95% of the universe and yet remains unknown.
- Scalar singlets under the SM gauge group ⇒ potential dark matter candidates communicates to the SM via the 125 GeV Higgs as the portal to the dark sector, however stringently constrained from dark matter direct detection data.
- Additional portals to dark matter via extra Higgses as in singlet extended multi-Higgs models relaxes direct detection constraints with potential prospects for collider signals.
- Extended scalar sectors are well motivated models addresses several issues such as dark matter, baryogenesis, inflation and potential sources of gravitational waves.
- Extra degree of freedom provides potential to fit light scalar excesses at 2-3 σ , such as 95 GeV excess in the $b\bar{b}$ and $\gamma\gamma$ modes at LEP and CMS.

The Model

- Consider a softly broken Z_2 (to avoid FCNC) symmetric Type II 2HDM augmented with a complex scalar singlet S, stabilized under Z'_2 .
- SM quantum numbers:

The scalar potential is:

Fields	Z_2	Z'_2
Φ_1	+1	+1
Φ_2	-1	$\left +1\right $
S	+1	-1

 $V_{2HDMS} = V_{2HDM} + V_S,$

$$\Phi_i = \begin{pmatrix} \phi_i^{\pm} \\ \frac{1}{\sqrt{2}}(v_i + h_i + ia_i) \end{pmatrix}, \quad i = 1, 2,$$
$$S = \frac{1}{\sqrt{2}}(v_S + h_S + ia_S)$$

$$\begin{split} V_{2HDM} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{11}^2 \Phi_1^{\dagger} \Phi_1 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h . c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \frac{\lambda_4}{2} (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h . c, \\ V_S &= m_S^2 (S^{\dagger} S) + \frac{m_S^{2'}}{2} (S^2 + h . c) + \lambda_3'' (S^{\dagger} S)^4 + \lambda_1'' S^2 (S^{\dagger} S) + h . c + \lambda_1'' S^2 (S^{\dagger} S) + h . c \\ &+ \lambda_1' S^{\dagger} S \Phi_1^{\dagger} \Phi_1 + \lambda_2' S^{\dagger} S \Phi_2^{\dagger} \Phi_2 + S^2 (\lambda_4' \Phi_1^{\dagger} \Phi_1 + \lambda_5' \Phi_2^{\dagger} \Phi_2) + h . c . \end{split}$$
 Baum, et.al, *JHEP*12(2018)044

• After electroweak symmetry breaking, particle content: $h_1, h_2, h_3, A, H^{\pm}, A_S$.

Interplay of DM and 95 GeV Higgs

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{A_S}
$95{ m GeV}$	$125.09{ m GeV}$	$900{ m GeV}$	$900{ m GeV}$	$325.86{ m GeV}$
m_{H^\pm}	$m_S'^2$	δ_{14}'	δ_{25}'	an(eta)
$900{ m GeV}$	$-4.809\times 10^4{\rm GeV^2}$	-9.6958	0.2475	10
v_S	c_{h_1bb}	c_{h_1tt}	a lignm	$ ilde{\mu}^2$
$239.86{ m GeV}$	0.2096	0.4192	0.9998	$8.128 imes 10^5 { m GeV^2}$

Benchmark point BP1

	Parameters	Range
	c_{h_1bb}	[0.0996, 0.320]
	c_{h_1tt}	[0.309, 0.529]
12		

$$\mu_{b\bar{b}}^{2HDMS} \propto |c_{h_1VV}|^2,$$

$$\mu_{\gamma\gamma}^{2HDMS} \propto \frac{(|c_{h_1 t\bar{t}}|)^2}{(|c_{h_1 b\bar{b}}|)^2} \propto (\frac{\tan \alpha_1}{\tan \beta})^2 \quad \mu_{\rm LEP}^{b\bar{b}} = 0.117^{+0.057}_{-0.057},$$

Allowed region consistent with 95 GeV excess, theoretical and experimental constraints from Higgs and dark matter searches.

S.Heinemeyer et.al, Phys. Rev. D 106 (2022), no. 7 075003 $\mu_{\gamma\gamma}^{\text{CMS}} = \frac{\sigma^{\exp}\left(pp \rightarrow \phi \rightarrow \gamma\gamma\right)}{\sigma^{\text{SM}}\left(pp \rightarrow H \rightarrow \gamma\gamma\right)} = 0.33^{+0.19}_{-0.12}$

Constraints on portal couplings $\delta'_{14} - \delta'_{25}$

- $$\begin{split} \delta_{14}' &= \lambda_4' \lambda_1', \\ \delta_{25}' &= \lambda_5' \lambda_2'. \end{split}$$
- Stringent constraints from LZ and Fermi-LAT data as well from boundedness-from-below constraints.

$$\begin{aligned} \frac{\lambda_{h_jA_SA_S}}{v} &= \left[\frac{\sum_{i=1}^3 m_{h_i}^2 R_{i1} R_{i3}}{3vv_S \cos(\beta)} + \frac{4\delta'_{14}}{3}\right] c_\beta R_{j1} \\ &+ \left[\frac{\sum_{i=1}^3 m_{h_i}^2 R_{i2} R_{i3}}{3vv_S \sin(\beta)} + \frac{4\delta'_{25}}{3}\right] s_\beta R_{j2} \\ &- \left[\frac{2}{vv_S} \left(2m_S'^2 + m_{A_S}^2 + \left(\frac{\sum_{i=1}^3 m_{h_i}^2 R_{i1} R_{i3}}{3vv_S \cos(\beta)} + \frac{\delta'_{14}}{3}\right) 2v^2 c_\beta^2 \right. \\ &+ \left(\frac{\sum_{i=1}^3 m_{h_i}^2 R_{i2} R_{i3}}{3vv_S \sin(\beta)} + \frac{\delta'_{25}}{3}\right) 2v^2 s_\beta^2 \right) + \frac{\sum_{i=1}^3 m_i^2 R_{i3}^2}{vv_S} R_{j3}, \end{aligned}$$

Effect of δ'_{25} dominant δ'_{14} over due to multiplicative factor of $\sin \beta$.

Collider Phenomenology

• The presence of a dark matter candidate allows new decay modes for the heavy Higgs h_3 to open up \implies Missing energy signals at colliders!

Decay Modes	Branching Ratio (BR)
$h_3 ightarrow b\overline{b}$	0.412
$h_3 \rightarrow A_S A_S$	0.247
$h_3 ightarrow t ar{t}$	0.106
$h_3 \rightarrow \tau \tau$	0.064
$h_3 ightarrow h_2 h_2$	0.061
$h_3 ightarrow h_1 h_2$	0.035
$h_3 ightarrow h_1 h_1$	0.022

Decay modes for h_3 in BP1.

Variation of BR($h_3 \rightarrow A_S A_S$) vs. DM mass for BP1 and Higgs constraints.

Signals at HL-LHC

• Signal: Mono-jet + MET $\sigma_{GGF} \times BR(h_3 \times A_S A_S) = 0.232$ fb for m_{h_2} =900 GeV.

Using cuts: $N_j < = 4, p_T(j) > 30, \eta < 2.8, E_T > 250 GeV,$ $\Delta \Phi(j, E_T) > 0.4, \Delta \Phi(j_1, E_T) > 0.6, N_{\ell} = 0$, signal significance = 1.36(LO) and 2.6 σ (NNLO+NNLL).

- Signal: 2 forward jets + MET $\sigma_{VBF} \times BR(h_3 \rightarrow A_S A_S) = 0.011$ fb.
- Using cuts: $p_T(j_1) > 80 GeV$, $p_T(j_2) > 40 GeV$, $\Delta \Phi(j, E_T > 0.5$, $\eta_{j_1 j_2} < 0, \Delta \Phi_{j_1 j_2} < 1.5, \Delta \eta_{j_1, j_2} > 3.0, M_{j_1 j_2} > 600 GeV$, $E_T > 200 GeV$, $N_{\ell'} = 0$, signal significance = 0.00032σ (LO) and 0.0055σ (NNLO). Lighter masses for m_{h_3} could potentially improve the sensitivity along with machine learning techniques as seen in Dey, et.al JHEP 09 (2019) 004.

Vector boson production.

Signals at lepton colliders

Mono-photon + Missing Energy

Mono-Z + Missing Energy

Significant enhancements near the higgs resonance region observed in muon colliders due to the muon Yukawa coupling \implies complementary searches to LHC.

Preliminary results.

Mono- γ + missing energy:

- For BP1, with $m_{h_3} = 900$ GeV, significance ~ 2.4 σ at 10 ab⁻¹at 1 TeV muon collider.
- For a lighter Higgs, $m_{h_3} = 700$ GeV, and higher invisible branching to DM ~ 69%, significance ~ 5.3 σ at 10 ab⁻¹ for a 1 TeV muon collider.

Mono-Z + missing energy:

• For a lighter Higgs, $m_{h_3} = 600$ sGeV, and light DM~55 GeV and thermal relic, significance ~ 5.3 σ at 10 ab⁻¹ for 1 TeV muon collider for leptonic final state.

Benchmarks with heavier Higgs and DM masses and sensitive to higher \sqrt{s} along with potential for other possible signal modes underway!

Summary and Outlook

- We consider the type II 2HDM extended with a complex singlet scalar. For the case where the real part of the complex scalar obtains a vacuum expectation value enabling a mixing between its scalar component and the 2HDM higgs sector. The pseudo scalar component stabilized under a Z'_2 symmetry and constitutes DM candidate A_s . The higgs sector consists of $h_1, h_2, h_3, A, H^{\pm}$. The lightest Higgs set to 95 GeV while second-lightest Higgs set to 125 GeV SM-like Higgs.
- Stringent constraints on $\tan \beta$, α_1 , α_2 from constraints to fit 95 GeV in bb, $\gamma\gamma$ mode.
- Stringent constraint from boundedness-from-below, direct detection data, indirect detection data from FERMI-LAT ⇒ constrains the DM portal couplings parameter space while being consistent with the 95 GeV excess.
- Potential signals at LHC: Mono-jet + E_T upto 2.6 σ (NNLO+NNLL) for $m_{h_3} = 900 GeV$ and BR($h_3 \rightarrow A_S A_S$) ~ 0.25. Conservative limits placed on m_{h_3} , further improvements for Di-jet + E_T signals expected for lower m_{h_3} .
- Potentially exciting signals at lepton colliders: e^+e^- and $\mu^+\mu^-$ with enhancements for mono- γ and mono-Z + missing energy signals for the latter. A full collider simulation is underway to span interesting regions of the parameter space Stay tuned!

Thank You