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Upstream correction systematic

. . . . n ly2d
> fit to upstream loss in MC in bins of reco KE inst = gty
GimE ner
-MC _ -MC,reco MC,true
AEupstream = KEinst - KEﬁ' )

> from the central values, fit a 2" order
polynomial to obtain an energy dependant
upstream loss correction which is applied to
both Data and MC

HKE[E — KEH*)(MeV)

AEypstream — AEypstream (KE/rﬁéoa ) @
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> to evaluate systematic, shift p; by +ep, %0 o

uncertainties, re-run the analysis, obtain two

P2
— =5
measurements of the cross section xs* 97+£33 0.21+0.03 (8.9+0.9)x10




Plots

> plots show the nominal central value
measurements and the
measurements for p; & ep,

> uncertainty is difference in from the
nominal measurement:
e — xghominal _ ot
>

for a single bin, asymmetric
uncertainties are defined as:

eV if ¢+ >0, €9 if e < O

if both e > 0 or e < O, then take
the largest of the two.
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dashed points are when et > O or et < O
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uncertainty in the upstream energy loss is largest in the 1900 MeV bin for all measurements

upstream energy correction is largest for the abs and cex measurement.



MC stat uncertainty accounts for limited MC statistics used to define templates for the fit, and
response matrices for the unfolding.

MC stat uncertainty in the fit can be accounted for using nuisance parameters ap:

L=-2 H H log(Pois(nc bl Z BsocbAcb,s)) + Gaus(ac p|Vebdc,b)
b ¢ s

Yeb = D5 Ac,b,s — total counts in region ¢, slice b

dc.b = \/Vc,p — Stat uncertainty
currently, pyhf API only supports using Gaussian constraints for MC stat NPs.

For unfolding, uncertainty is quantified by a covariance matrix:

V' = Vpata + Vmc

Vpata — covariance of the unfolded distribution (accounts for prior uncertainties, uncertainty for multiple
unfolding iterations)

Vime — covariance of the migration probability i.e. covariance of response matrix. Expressed as the
poisson covariance in the pyunfold API

diagonal component of V is the uncertainty in the unfolded histogram.



How to evaluate the MC stat uncertainty?

> run analysis using fit model without NPs and without calculating V¢
> uncertainties in xs will be purely due to Data stat uncertainty.

> run analysis with fit model + Vjc, uncertainties in xs are Data + MC stat.

2 _ 2 2
€MC stat = €Data stat + MC stat — €Data stat

(4)



Plots
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absorption
KE (MeV) Total Data stat
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tables show fractional error in the cross section for Data stat and MC stat.

€

fractional error = ————
Xsnom/nal

for abs and cex, Data stat uncertainty is larger, for spip and pip, MC stat is larger
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upstream correction systematic evaluated,

fit currently has very large uncertainties which propagates to the final measurement try to improve?
(see backups)

MC stat uncertainty has two components, in the fit and unfolding.
MC stat unfolding uncertainty easy to distinguish from total uncertainty

MC stat uncertainty in fit is more difficult, as this uncertainty is intrinsically part of of the model.



table of systematics and which methods can be used

Systematic NPs Repeat Data analysis ~ Toy MC method Propagate Input
MC stat uncertainty v (implemented) - v - stat err
theory uncertainty - - v (implemented) - +20%
background subtraction - - - v (implemented) +20%
upstream energy loss - v (implemented) - - +lo fiterr
beam momenta mis-modelling - v (implemented) ? - +lo fiterr
shower energy correction - v (implemented) - - +1o fiterr
track length resolution - v (implemented) ? - 2.6%
beam momentum resolution - ? v

space charge correction

v (run with SCE off)

2.5%
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Backup
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Alternate Upstream correction
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> Tried alternate fit function for DeltaE, pstream.

> from left p, << 1, 2nd order polynomial term is very small, so tried a linear fit instead
> fitis also reasonable, and 1o error band is much smaller.

> both have good x2/ndf
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Alternate Upstream correction

poly2D line
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Alternate Upstream correction
poly2D
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> calculated KE distributions are fairly similar, so switch to line fit.
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fit model can facilitate nuisance parameters to quantify different systematic effects.

if a systematic can be expressed as a fractional error on the number of events, it can be incorporated
into the model.

if we allow more than 1 KE bin in the fit model, systematics which can be expressed as a fractional
error in the interacting KE

benefit:

implementation is simple, adjust model, re-run fit and subsequent steps
adding nuisance parameters can help the model mitigate the effects on the fit results

disadvantages:

higher number of NPs results in fit being underconstrained, resulting in more unstable fitting.
must rerun pull study and normalisation cross checks

Current model has takes 4 observations, and has 8 free parameters (4 POls, 4 NPs), so model is already
underconstrained.

MC stat uncertainty is currently being incorporated using NPs
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analysis performs various corrections by using values extracted from fits

systematic effect on a specific correction can be determined by changing values used to calculate the
correction

example:

upstream energy correction is determined from fit values p;.
fit values have some uncertainty determined by the fit: p; & ¢;

determine uncertainty in upstream energy correction by re-running analysis for p; + ¢;, and p; — ¢;, obtain
high low
0" and o

systematic is (69" — /%) /2
benefits:

no additional changes required to analysis or fit model
does not require rerunning toy studies if the fit results don't impact the region identification

disadvantages:

evaluation of systematics is very simple, does not account for correlations between other effects

magnitude of systematic may to be compatible to the measurement i.e. can't be expressed as a fractional
error
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systematic is evaluated by running multiple pseudo experiments using the toy estimating the effect
some systematic has on the measured cross sections. Uncertainties are then expressed as fractional
errors and applied to the Data MC measurement.

benefits:

Data MC analysis does not need to be re-run at all
multiple systematic effects can be varied simultaneously (handles correlations between effects)

disadvantages:

depending on the number of pseudo experiments, method may be time consuming

not all systematics can be incorporated e.g. upstream energy correction, beam momentum resolution,
selection is not incorporated into the toy.
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MC stat uncertainty (uncertainty due to limited MC statistics)

Theory uncertainty (uncertainty in Geant 4 cross sections)

Upstream energy loss uncertainty (used to calculate initial and interacting KE)

Beam momenta mismodelled in MC(reweigh to Data)

Shower energy correction (neutral pion id)

Beam momentum resolution(uncertainty in measured momenta from beam instrumentation)
Space charge correction (used at multiple places in the selection and track length calculation)

Track length resolution (used to calculate interacting KE)

18



MC stat uncertainty is built into region fit, and unfolding
reigon fit incorporates this as a nuisance parameter
unfolding propagates the statistical uncertainty in the response matrix

to calculate the MC stat error, run analysis without nuisance parameters and without response matrix
error propagation
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cross section model uncertainty is £20%, fit tries to determine normalisation in Data.

using toys, vary true cross section by £20%, keep template fixed and re-run analysis.

uncertainty in normalisation systematic is e = ¢™M€% — glrue,
repeat experiment multiple times, obtain average €

convert € to fractional error, apply to data measurements
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background subtraction uses background shapes from MC, thus, also propagate +20% theory
uncertainty through the background subtraction

For a region ¢’ the background samples are when ¢’ # s’
fit predicts the estimated counts of each process in each region v/ o &+ Aver o
subtract background from Njy; to get Njy o+ in each energy slice i.e. we require shapes of Nj,; o/

Zc NMC

c,b,s’

shape of Nj; for each process is determined fromMC S, o+ = =N
c,b c,b,s!

background subtracted interacting counts in each region is N¢/ , £ AN, , (includes Data stat + MC stat
uncertainty):

NC’,b = N?/G’gj - Z l/c/75/ = N?,o:f — Z VC’,S’Sb,S’ (6)
s’ s’
2 (l/ /’ /)2
(ANer p)? = NI+ | (Sper) (Bver o) + SN ¢ ,\S/MC Sp.sr(1+Spsr) + 1S @
s’ c,b’Ye,b,s!

f=02
not really a systematic, need to propagate
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— : Selected beam pi i
Re-weighing systematic clected beam plons Sideband
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> sideband is beam particle
selection, except nPFO == 0O e

> to evaluate systematic, shift
uncertainties in fitted
parameters by +1 standard
deviation, re-run analysis with
PDSP MC + Data
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PiELe(MeV)
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shower energy is corrected improve pi® mass reconstruction
mass used in 7© selection

correction is:
C(Eshower) = Po In(Eshower — P1) + P2

parameters p;,i € {0, 1,2} obtained from fit, and have uncertainties

vary p; by £1o, re-run analysis with PDSP Data/MC
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individual beam momenta measured by the beam spectrometer has a 2.5% uncertainty.

for 2GeV beam, this is 50MeV, thus energy slice bins should be no less than 100MeV (currently
200MeV)

one option is to propagate uncertainty through KE calculation
(how does this manifest in errors in a histogram?)

others (Kang, Francesca) vary beam momenta in data by +1o, re-run analysis

could run psuedo experiments using toy, randomly assign a beam momenta offset to toy data
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track length resolution

> using ProtoDUNE MC fit distribution to:

[reco _ [true

[reco
> from fit, resolution is rms of distribution

> similar approach to beam momenta resolution can be used
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