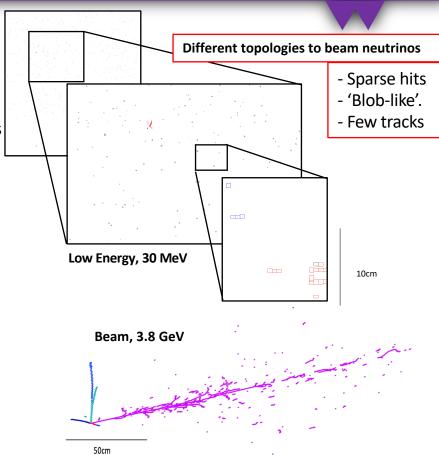
Low Energy Reconstruction with Pandora: Handling backgrounds

Matthew Osbiston

Wednesday 1st May | LEWG Meeting


Moving to phase 2

Previous Pandora Development: Beam neutrino interactions

Now: Low energy neutrino interactions

- Improve the pattern recognition for individual low energy neutrino events
- Adapt reconstruction to handle a more realistic readout from FD with backgrounds
- 3. Explore analysis-reconstruction continuum exploit tailored reconstruction and use physics focused analysis to refine performance

Low Energy Reconstruction Algorithms: Work plan

- 1. Trained a **DL neural network** for **vertex identification** using <u>MARLEY samples</u> (5-30 MeV) at high stats (50k)
- 2. Retuned **2D to 3D cluster matching** algorithms to match low energy topologies and reconstruct particles lowered threshold criteria
- Wrote new algorithm using a BDT to drive 2D clustering decisions, trained on low energy samples – separate photons and electrons in to individuals objects

Now:

1. Trained a **DL neural network** for **signal vs background separation** using new MARLEY samples (5-70 MeV) at low stats (3.7k)

DLSignal Algorithm Development: New Sample production

LArSoft Version

```
version = v09_82_02d01
```

Config file fhicls: ['-c', '/exp/dune/app/users/osbiston/POMS/config.cfg'] ← Find more on input here

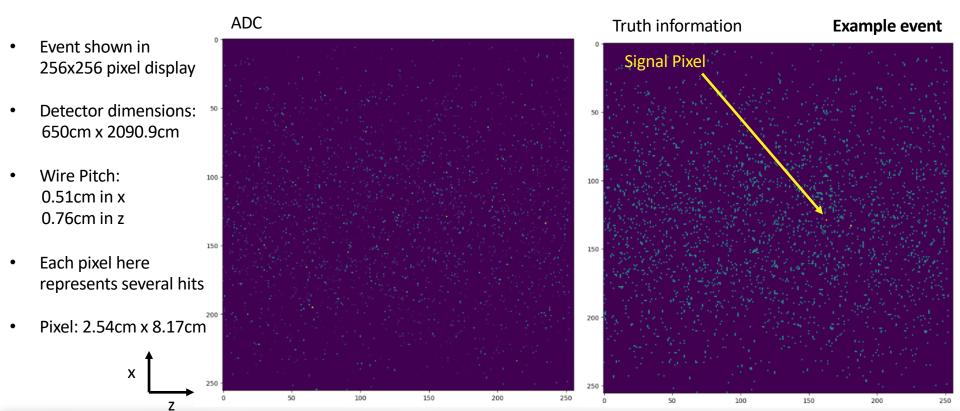
```
gen_fcl = prodmarley_nue_flat_radiological_decay0_dunevd10kt_1x8x14_3view_30deg.fcl
g4_stage1_fcl = supernova_g4stage1_dunevd10kt_1x8x14_3view_30deg.fcl
g4_stage2_fcl = standard_g4stage2_dunevd10kt_1x8x14_3view_30deg.fcl
detsim_fcl= standard_detsim_dunevd10kt_1x8x14_3view_30deg.fcl
reco1_fcl= standard_reco1_dunevd10kt_1x8x14_3view_30deg.fcl
reco2_fcl= matt.fcl
```

matt.fcl

```
include "standard_reco2_dunevd10kt_1x8x14_3view_30deg.fc1"
process_name: RecoPandora

# Use custom settings file
physics.producers.pandora.ConfigFile: "MyPandoraSettings_Master_Standard.xml"
physics.reco: [ @sequence::dunefd_vertdrift_tpc_reco2 ]
```

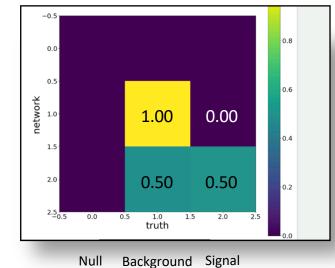
3730 (20 GB) events total


MARLEY 5-70 MeV with CC and ES int. in 1x8x14 VD geometry with backgrounds (decay0)

MyPandoraSettings_Master_Standard.xml

```
<!-- GLOBAL SETTINGS -->
<IsMonitoringEnabled>true</IsMonitoringEnabled>
<ShouldDisplayAlgorithmInfo>false</ShouldDisplayAlgorithmInfo>
<SingleHitTypeClusteringMode>true</SingleHitTypeClusteringMode>
<!-- ALGORITHM SETTINGS -->
<algorithm type = "LArEventWriting">
   <EventFileName>marley_flat_1x8x14_5_70MeV_run5.pndr</EventFileName>
   <ShouldWriteEvents>true</ShouldWriteEvents>
   <ShouldOverwriteEventFile>true</ShouldOverwriteEventFile>
   <ShouldWriteMCRelationships>true</ShouldWriteMCRelationships>
   <ShouldWriteTrackRelationships>true</ShouldWriteTrackRelationships>
   <GeometryFileName>Pandora Geometry.xml</GeometryFileName>
   <ShouldWriteGeometry>false</ShouldWriteGeometry>
   <ShouldOverwriteGeometryFile>true</ShouldOverwriteGeometryFile>
   <LArCaloHitVersion>2</LArCaloHitVersion>
</algorithm>
```


DLSignal Algorithm Development: New Sample production

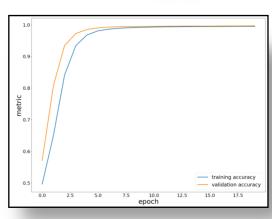


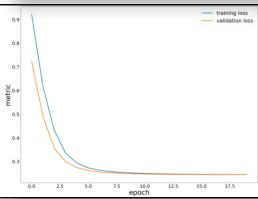
DLSignal Algorithm Development : NN Training

The network:

- Same architecture as vertexing network
- Using Andy Chappell's original notebook structure
- Classes: 0 Null, 1- Background, 2 Signal
- Weighting to account for uneven representation for signal/background/null pixels

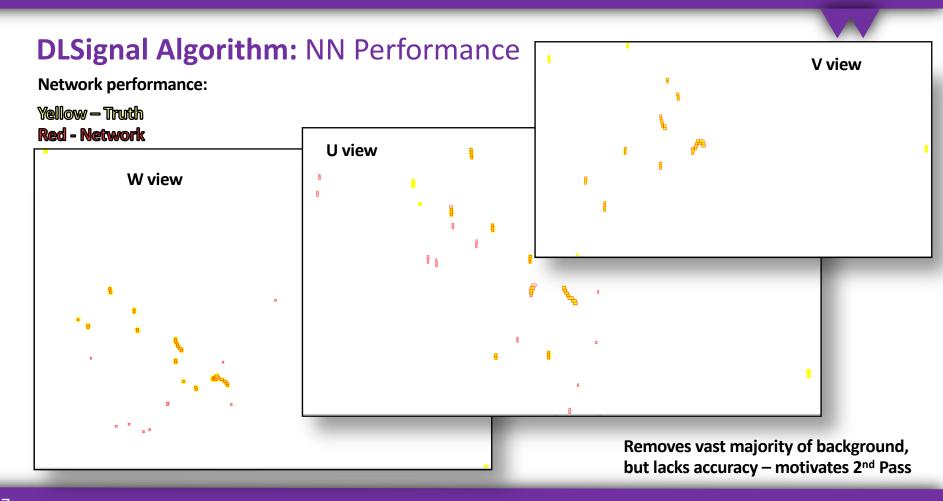
Initial result:


Network Training:

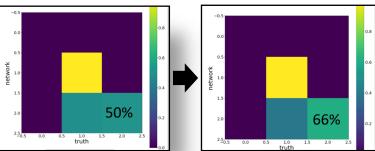

Null: 54,200,000 pixels

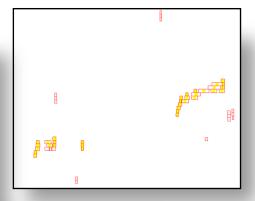
Background: 2,730,00 pixels

Signal: 6,400 pixels

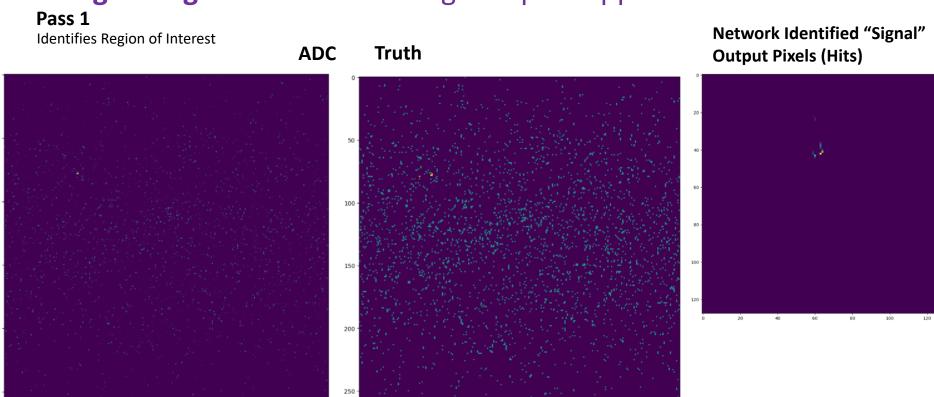

Total events: 730

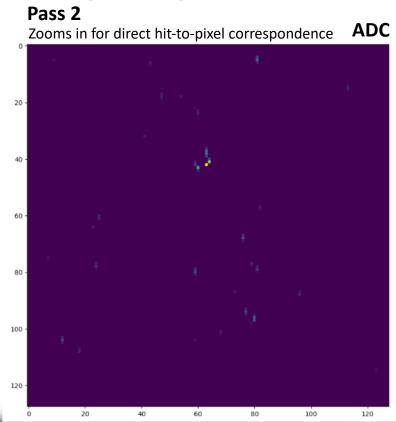
Ν

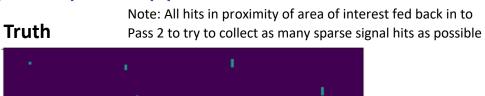


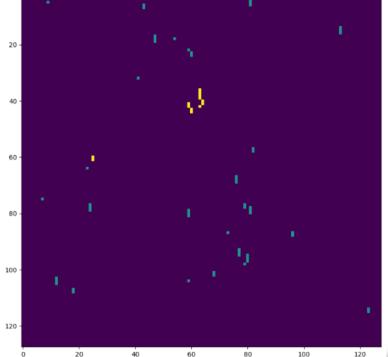

DLSignal Algorithm: NN Performance

Refinement 1:

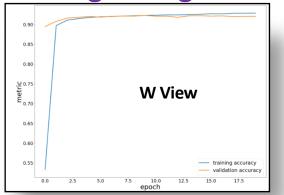

Train on higher stats (3.7k vs 640) and adjusting the weight function (upweights lower represented classes) for equal representation






DLSignal Algorithm: NN Training two pass approach

DLSignal Algorithm: NN Training two pass approach



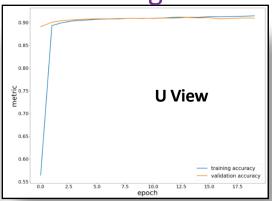
DLSignal Algorithm: NN Training Pass 2

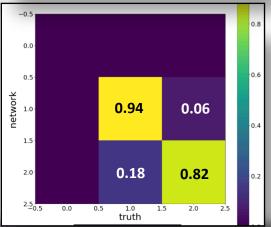
0.6

[1.4508963e+07 6.0000000e+00 3.0000000e+01] [2.0000000e+00 2.2363000e+04 1.6780000e+03]

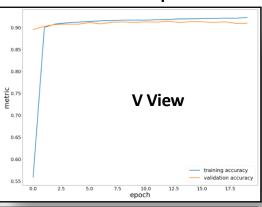
0.93

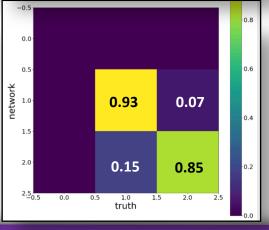
0.09


1.0


truth

0.07


0.91


2.0

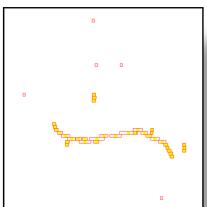
Much better network performance

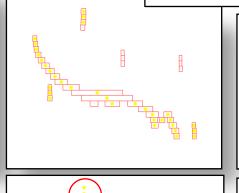
0.0

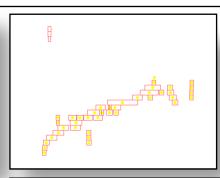
0.5

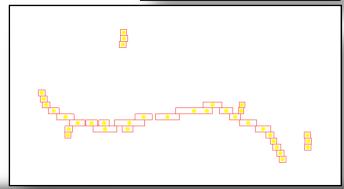
network

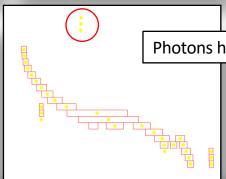
DLSignal Algorithm Development:

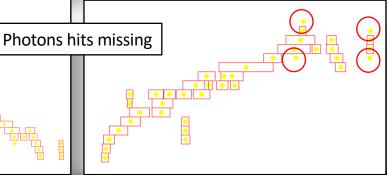

Can this be pushed further?

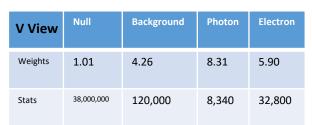

• Seems like lots of the photons aren't identified?

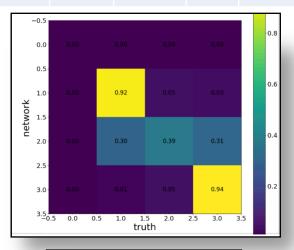

 Perhaps create a distinct class for photons to allow network to learn more about them

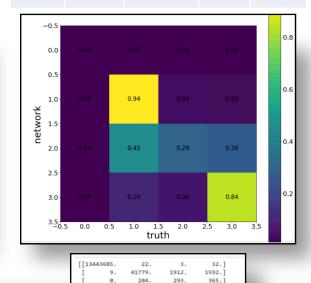

Yellow - Truth Red - Network


Background hits remaining

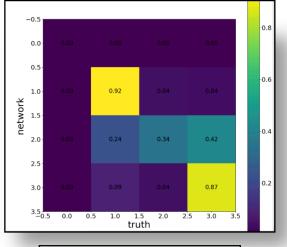




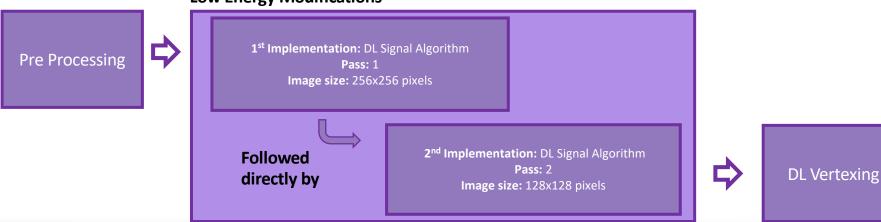

DLSignal Algorithm: NN Training Pass 2 Pass 2


Update: Modified pass 2 to include electron (class 3) and photon (class 2) class. Both of these classes are added to the same CaloHitList

W View	Null	Background	Photon	Electron
Weights	0.94	4.69	8.03	5.47
Stats	39,000,000	63,400	7,320	34,100


U View	Null	Background	Photon	Electron
Weights	0.99	4.08	8.29	5.90
Stats	40,100,000	139,000	8,180	31,700

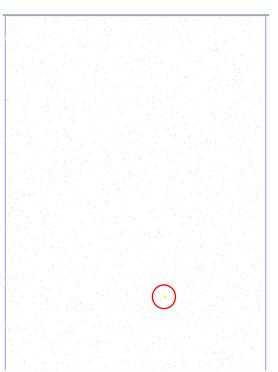
9106.]]

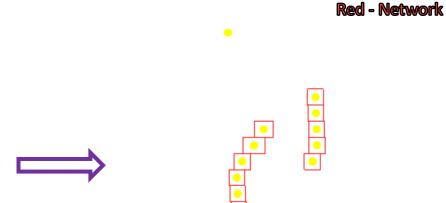

41929.	1584.	1
	1304.	1320.]
734.	481.	425.]
1053.	684.	8846.]]

[[129	40283.	13.	4.	27.]
]	1.	21166.	1055.	800.]
]	0.	651.	859.	683.]
]	26.	125.	494.	9941.]]

DLSignal Algorithm: Implementation in reconstruction chain

- Implemented at beginning of reconstruction chain
- Runs in two separate instances
- First instances runs pass one training of the NN over 256x256p and outputs a new CaloHitList
- Second Instance instances runs pass two training of the NN over 128x128p and outputs a new CaloHitList for each view and background CaloHitList

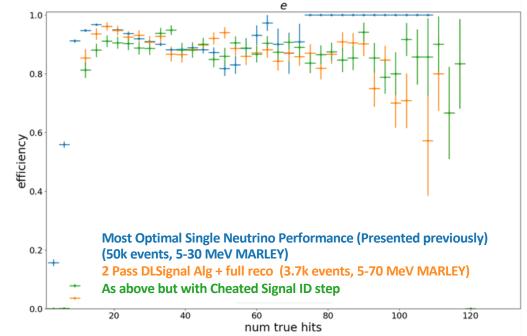

Low Energy Modifications



DLSignal Algorithm: Results and refinement

DLSignalAlg in action!

Reconstruction with LowE modifications shown before



Yellow - Truth

DLSignal Algorithm : Final Metric Results

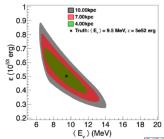
Impressive efficiency for electron reconstruction – 3.7k events included

(note 50% purity and 50% completeness requirement for reach reconstructed particle)

Reconstruction – Analysis Continuum: What comes next?

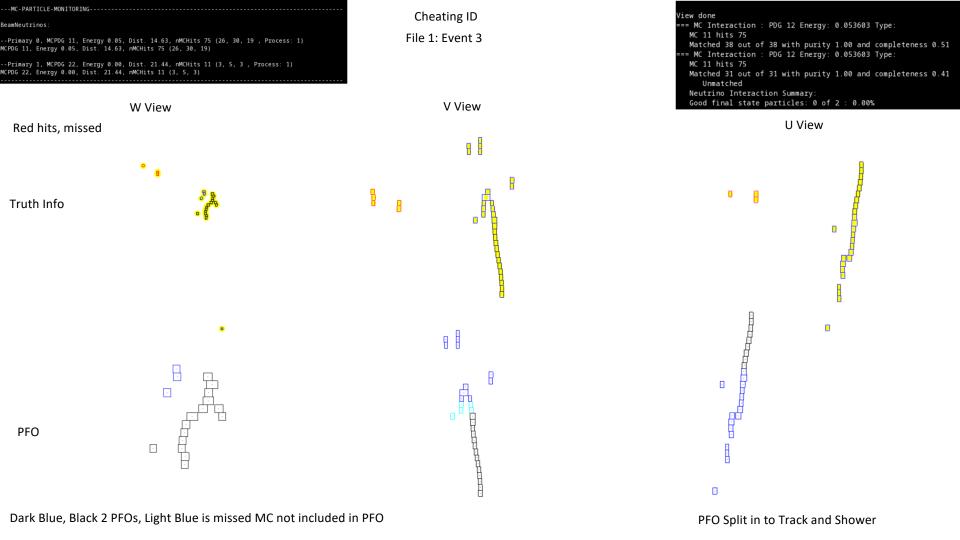
• Aim: Maximise separation of signal and background energy deposition in detector

- Conduct Low Energy Analysis using remastered reconstruction to drive real-world considerations
 - Make fits of reconstructed samples compared to supernova model expectations


EXAMPLE ANALYSIS

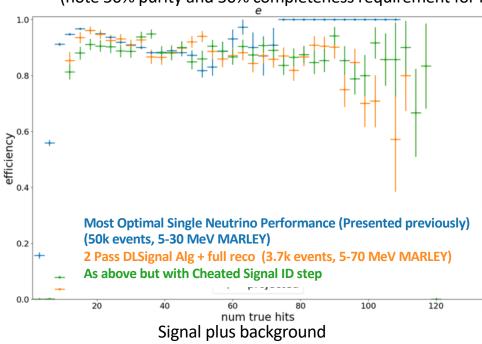
Astrophysics of core collapse

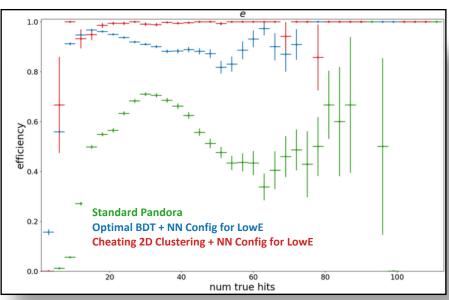
- · Supernova spectral parameter fits
 - Fit to the SN spectral parameters


$$\begin{split} \phi(E_{\nu}) &= \mathcal{N} \left(\frac{E_{\nu}}{\langle E_{\nu} \rangle} \right)^{\alpha} \exp \left[- \left(\alpha + 1 \right) \frac{E_{\nu}}{\langle E_{\nu} \rangle} \right] \\ &\sim \text{luminosity} \qquad \text{'pinching' parameter} \end{split}$$

- SNOwGLoBES to model signals described by the pinched-thermal form.
- Focus on v_e flux and v_e -CC interactions.

Backup





DLSignal Algorithm: Final Metric Results

• Impressive efficiency for electron reconstruction – 3.7k events included

(note 50% purity and 50% completeness requirement for reach reconstructed particle)

Signal neutrino events only

Background/Signal Work

Implementation:

- New code in larpandoradlcontent/LArSignalId
 - DISignalAlgorithm.h
 - DlSignalAlgorithm.cc
- Uses similar structure to DIVertexing
- Much more simplified structure/functions
- Converts CaloHit positions to a relative 256x256 pixel
- Runs event 'pixels' through network
- Creates mapping between signal pixels and CaloHits and adds to new SCaloHitListX, which is returned

PandoraSettings_Neutrino_DUNEFD_VD_LowE.xml

```
<algorithm type = "LArDLSignal">
    <TrainingMode>false</TrainingMode>
    <CaloHitListNames>CaloHitListW CaloHitListU CaloHitListV</CaloHitListNames>
    <SignalListNameU>SCaloHitListU</SignalListNameU>
    <SignalListNameV>SCaloHitListV</SignalListNameV>
    <SignalListNameW>SCaloHitListW</SignalListNameW>
    <SignalListNamed>SCaloHitListW</SignalListNameW>
    <SignalListName2D>SCaloHitListD</SignalListName2D>
    <ModelFileNameU>PandoraNetworkData/PandoraUnet_backgrounds_1_U.pt</ModelFileNameU>
    <ModelFileNameW>PandoraNetworkData/PandoraUnet_backgrounds_1_V.pt</ModelFileNameV>
    <ModelFileNameW>PandoraNetworkData/PandoraUnet_backgrounds_1_W.pt</ModelFileNameW>
    <Visualise>false</Visualise>
</algorithm>
```

- Runs after LArPreProcessing and before LArDIVertexing
- Outputs new 'signal list with Prefix 'S' Used by subsequent algs

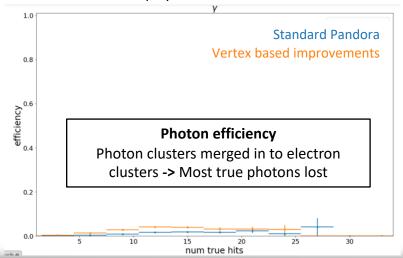
Function Calls:

Run

- PrepareTrainingSample
- Infer
 - MakeNetworkInputFromHits
 - GetMCToHitsMap
 - CompleteMCHierarchy
 - GetHitRegion

https://github.com/MattOsbiston/LArReco/tree/feature/Rocky9_signalbackground/setting

https://github.com/MattOsbiston/LArMachineLearningData/tree/feature/Rocky9_signalbackground/PandoraNetworkData

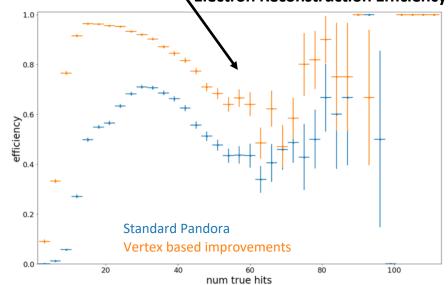

https://github.com/MattOsbiston/LArContent/blob/feature/Rocky9_signalbackground/larpandoradlcontent/LArSignalId/DISignalAlgorithm.cc

Low Energy Reconstruction: Previous Work

- Deep Learning Vertex Position
 - Improved vertex efficiency leads to greater reconstruction efficiency
 - · Vertex position used in logic in downstream algorithms
- Electrons with 40 80 hits
 - Despite more accurate vertex, reconstructed clusters are still split
 - 2D to 3D cluster matching creates split particles below threshold

Next step:

Examine event displays to understand failures

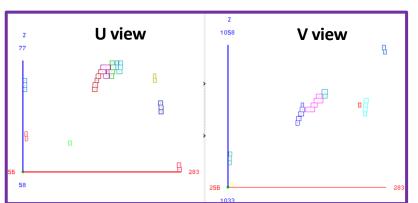


Middle region (40 - 80 hits)

True particle split in to multiple PFOs -> incomplete PFOs, drop below completeness cut

Particle Flow Object (PFO)

Electron Reconstruction Efficiency

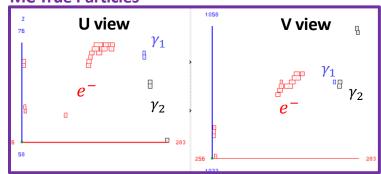


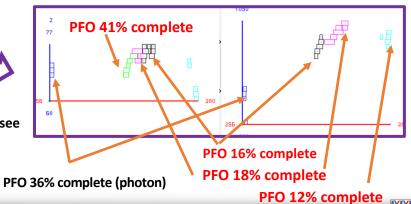
Algorithm Development: Understanding standard Pandora

 True particles are being reconstructed as multiple, incomplete PFOs due to fragmented input clusters

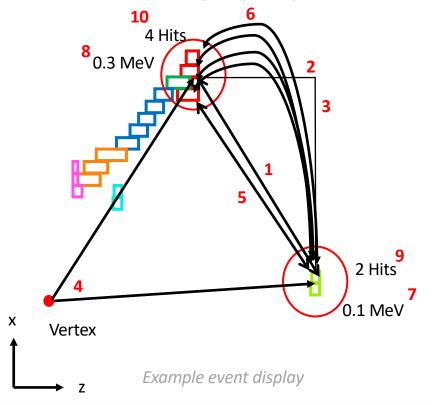
Input cluster hits (U, V Views)

Distinguishing between electrons and deexcitation photons is a really difficult task!


Performance we want



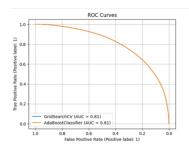
Performance we see


MC True Particles

Standard Pandora – End of Reco chain

Cluster Merging Algorithm Design: Parameters

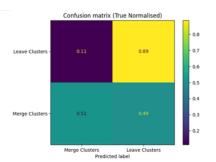
12 Parameters

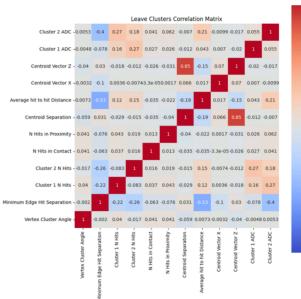

Parameters to compare for each pairwise cluster choice:

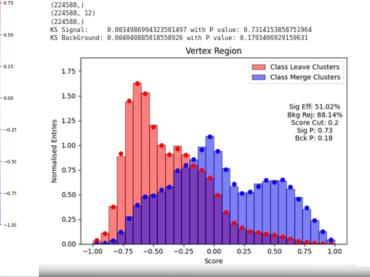
- 1. Distance between centroid of each cluster
- 2/3. x and z component of vector between centroid of each cluster
- 4. Angle between centroid and interaction vertex
- 5. Minimum distance between a hit in each cluster
- 6. Average distance between each hit in each cluster
- 7/8. Total ADC of each cluster
- 9/10. Number of hits in each cluster
- *11. Number of hits in contact with hits in other cluster
- *12. Number of hits in proximity to hits in other cluster
- *Not represented

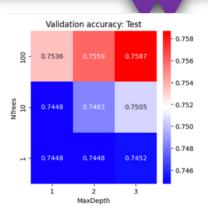
Merging BDT v8

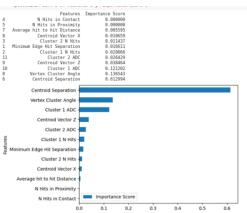
- **BDT Training stats**
- 12 Parameters

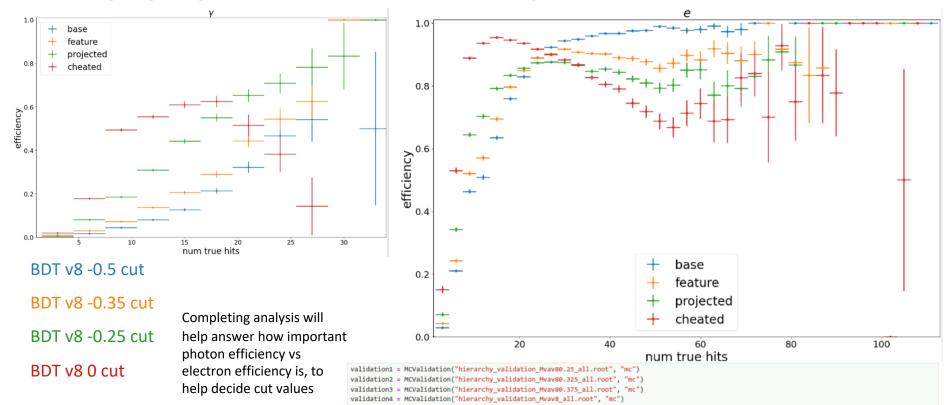


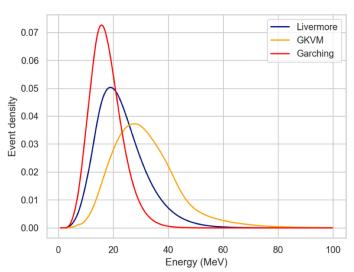

(224588, 12)


- 0.75


- 0.50


- 0.25





Merging Algorithm: Particle Efficiency with BDT Cuts

Expected supernova core-collapse signal: SNOwGLoBEs

- Make fits of reconstructed samples compared to supernova model expectations
 - SNOwGLoBEs fast event rate calculation tool
 - MARLEY Monte Carlo Event Generator for LAr interactions

Work developed in conjunction with Low Energy Working Group

40 kton LAr, 10 kpc SN

Channel	Liver-more	GKVM	Garching
$v_e + ^{40} \text{Ar} \rightarrow e^- + ^{40} \text{K}^*$	2648	3295	882
$\overline{\nu}_e + ^{40} \mathrm{Ar} \rightarrow e^+ + ^{40} \mathrm{Cl}^*$	224	155	23
$\nu_X + e^- \rightarrow \nu_X + e^-$	341	206	142
Total	3213	3656	1047

ve dominant signal

ve Charged current events with arbitrary normalisation

https://indico.cern.ch/event/1199289/contributions/5447099/attachments/2705699/4697057/DUNE_LEP_CCuesta.pdf

