FSI Plans Generator workshop

Steve Dytman University of Pittsburgh

14 July, 2024

- overall what we wanted now
- what we can do this week?
- what we can do in next 6? Months
- will take concerted effort

Why FSI matters

- ▶ The great confuser hadron mfp ~ fm means 'large' (A dep) changes in both topology and kinematic distributions
 - when only muon detected (Pion production followed by pion absorption mimics quasielastic included in $CC0\pi$ signal)
 - ▶ Hadrons change energy/angle through scattering (+additional p,n..)
 - Charged→neutral through charge exchange (+additional p,n..)
- \triangleright Too few studies with \vee or e beams initial vs. final state
 - ▶ LAr detectors important for low thresholds
- Most data from other facilities
 - Pion, proton beams from 1970's, 1980's
 - More recent work coming from ProtoDUNE
- Theorists tend to avoid the subject due to the complexity

Overview

- Leaders SD, Callum Wilkinson (LBL)
- Codes and young people/advice
 - NuWro Ben Bogart (UMich) Jan Sobczyk offline/Callum
 - ▶ NEUT Richie Diurba (Bern) Callum/Patrick Stowell offline
 - GENIE/INCL Liang Liu (FNAL) SD, SG
 - GENIE/hA/hN Mohamed Ismail (Pitt) SD
 - ► GENIE/GEANT Marc Vololoniaina (Madagascar) offline SD
 - Achilles no one available
- Desires (N=nucleon (p or n), A=nucleus, pi= $\pi^{+/-}$ or π^0)
 - Extract NN, piN code/algorithm for each program
 - ▶ Be able to run piA, NA code get cross section output
 - Be able to run nuA and look at hadrons

Model Overview

Empirical

- GENIE hA (much better agreement with data than expected)
- ▶ True impulse approx. (IA) nucleon as free good for KE>~500 MeV

Semi-empirical

- Oset πA , Pandharipande/Pieper NN adds medium corrections
- Both are in GENIE hN and NuWro, Oset in NEUT
- NEUT has new πN tuning (Pinzon et al.)
- ▶ GEANT has many processes, major recent improvements

Semi-quantum

- ACHILLES Green's Function Monte Carlo for NN
- Fluka not available
- GiBUU strong, consistent medium effects
- INCL++ solid theory basis (Cugnon), has evaporation, coalescence

FSU strategy

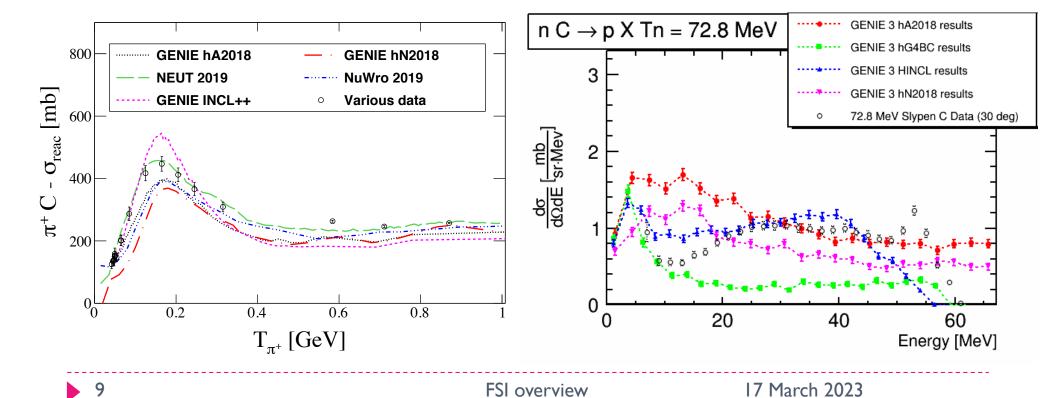
- Link hN to hA to nuA, all for same hadron KE
- Look at π^+ p, π^0 p, and π^- cex and pp, pn, and nn for all codes
 - What is raw, what is added in nucleus?
 - Reexamine for struck nucleon with nuclear corrections?
- Look at π^+ p, π^0 p, pA, and nA total reaction xs (σ_{reac}) vs. underlying hadron-nucleon (ratio at same KE)
 - Interchange, e.g. NuWro π^0 p in NEUT
- Look at vA (QE for p, RES of pions) for same preFSI KE hadron
- Emphasize charged hadrons if time becomes short

Later goals

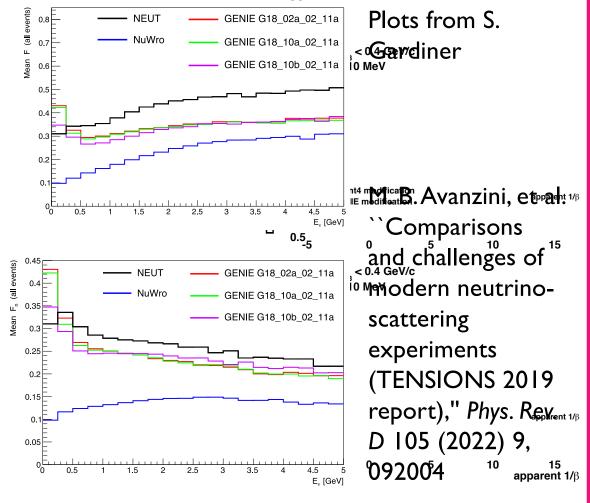
- More emphasis on neutrals (n and π^0)
- Look at components of σ_{reac} e.g. inel, cex, abs/ko, pi prod
- Work harder to understand nuclear corrections (does Pauli blocking, nucleon BE and momentum, NN correlations matter?)
- Look at hadron transparency

GENIE FSI strategy

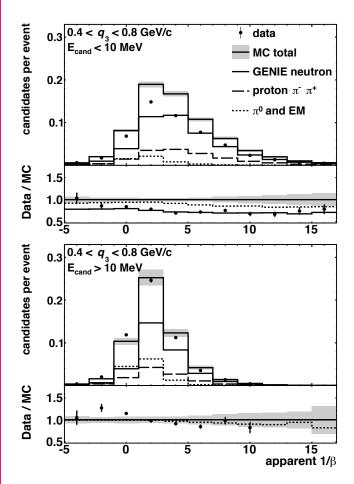
- For better comparisons, goal always for 2 codes which are compatible with neutrino and electron beam codes.
 - hN is Intranuclear Cascade (INC, common in generators) and hA is data driven/simplified version (unique)
 - hA is fully reweightable, very fast
 - Both are somewhat fit to hadron-nucleus data.
- Advances slow, come when manpower available (Pitt undergrads, Tomek Golan, Madagascar PhD students)
- As of now, includes pions, K+, p, and n
- ► INCL++, GEANT4 introduced in v3.2 (external packages)
 - All 4 FSI models in GENIE use same interface
 - See Eur. Phys. J. ST 230, 4449-4467 (2021) for v3.2


GENIE comparison tools (hadrons)

- Large database of data with π , p, n, K⁺ beams
 - Major source is BNL ENDL repository
- Comparisons
 - Gevgen_hadron is GENIE version for hadron-nucleus
 - Uses any of the 4 GENIE models
 - Code to start simulations for any probe, nucleus – can be based on data, e.g. π⁺ Ni to match McKeown data.
 - Code to make a plot comparing simulation with data

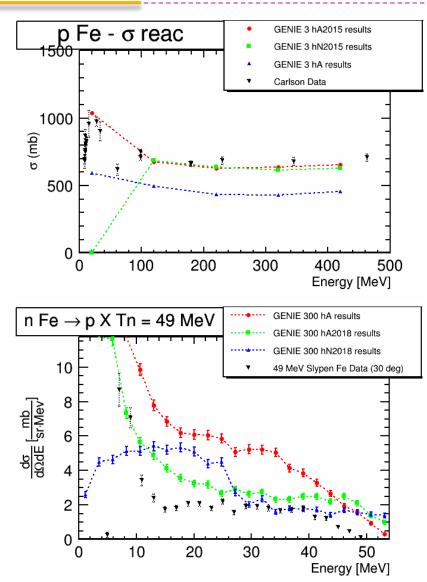

Some validation plots

- Mainly total reaction cross section
 - NEUT has best agreement by fitting πN cross section to these data
- GENIE also uses double differential cross sections
 - Minimal tuning, mainly use a model



Problems I - neutrons

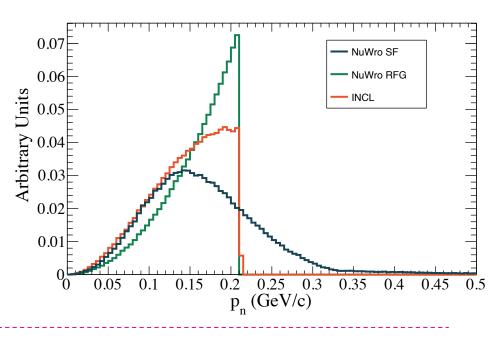
Top: fraction of energy in final state from neutrals Bottom: fraction of energy in FS due to neutron



M. Elkins [MINERvA] et al., Phys. Rev. D I 00, 052002 (2019)

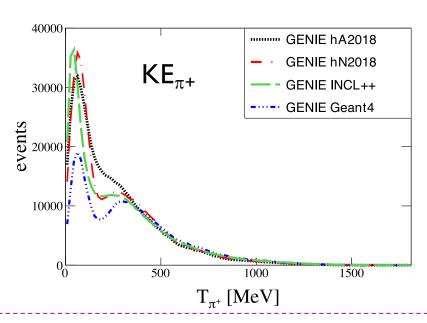
Problems II - low energy particles

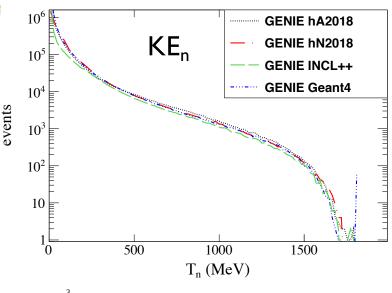
- Called vertex activity in some experiments
- Nucleons, nucleon clusters, photons
- None are in old standard
- Although GENIE v3 FSI was better than v2, not optimal

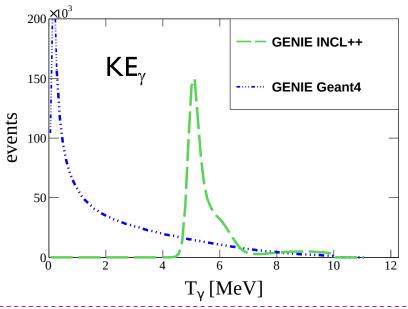


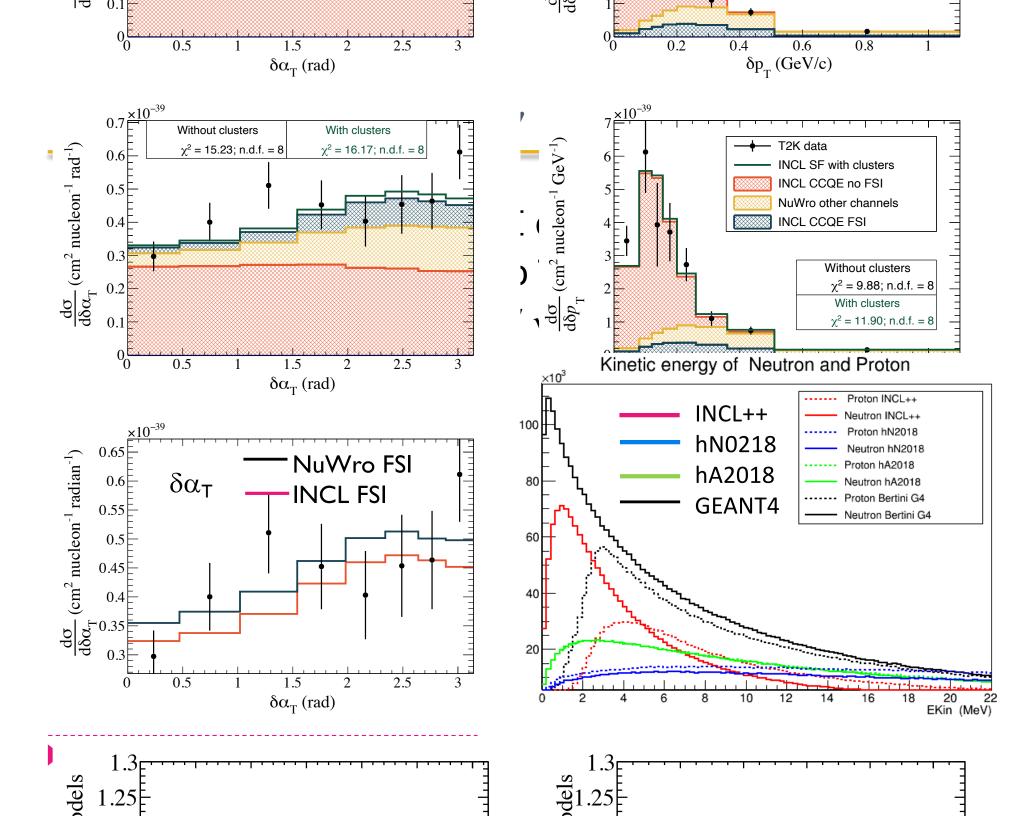
FSI overview

17 March 2023

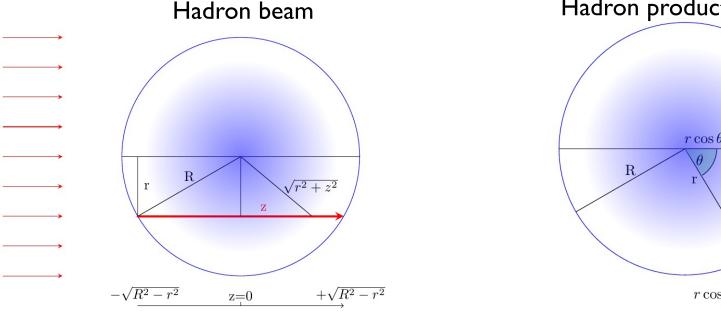

INCL - new standard?

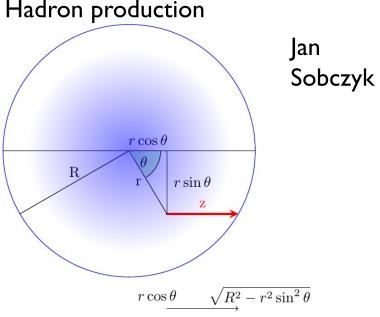

- Cugnon, David, Mancusi...
 Phys Rev
 - Better nuclear model (nucleons in local potential)
 - Plot below, similar to LFG w/o correlations
 - Emission of γ , ²H, ⁴He...
 - Handles π , N (p and n), not K
 - Implemented in GENIE Eur.
 Phys. J. ST 230, 4449-4467
 (2021) and NuWro
 [arXiv:2202.10402 [hep-ph]]




GENIE study for 2 GeV ν_{μ} Ar (mostly π production)

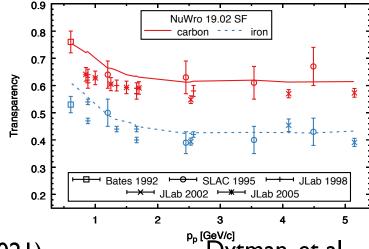
- PhD thesis of NarisoaVololonaina (Madagascar)
- Test FSI models hA , hN, INCL++, and Geant4



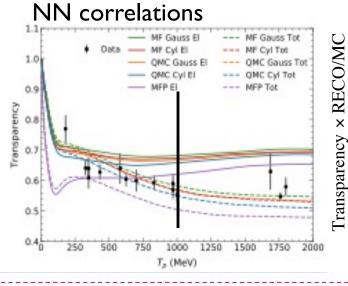


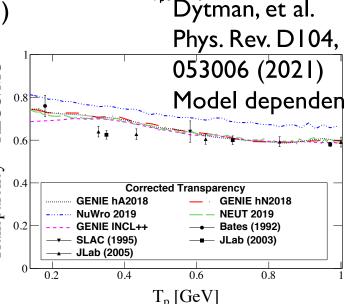
Transparency - new validation method?

- Transparency measures probability of escape
 - Direct measure of what we need for FSI in v or e interactions
 - In fact, that is the way transparency is measured
- All validation done now with hadron-nucleus interactions
 - If mean free path (MFP) is small, this is dominated by surface

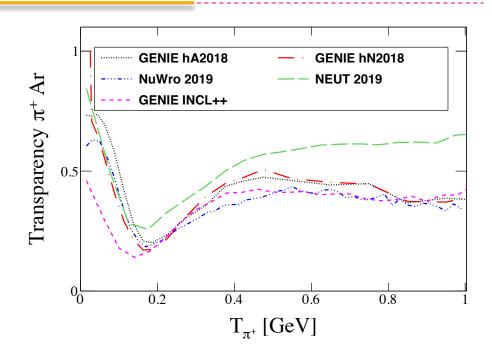


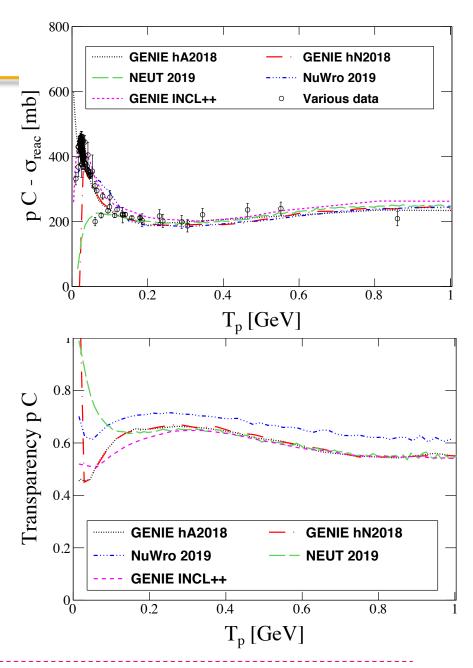
Transparency theory vs. experiment - protons


- Many experiments with electrons for proton and pion transparency, mostly at high energies.
- Recent theory studies aimed at needs of neutrino community
- All proton transparency here


Niewczas, Sobczyk Phys. Rev. C100, 015505 (2019) NuWro compare

Isaacson et al.


Phys. Rev. C103, 015502 (2021)


Pion transparency

- No data for pion transparency at T_{π} <~1 GeV
- Significant model dependence
- Focus on Isaacson vs. us?

σ_{reac} vs. transparency

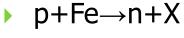
- σ_{reac} most common
- Transparency has new sensitivities (NN corr, formation zone...)
- Best practice is to use both pieces of data
- Better data needed

Summary+outlook

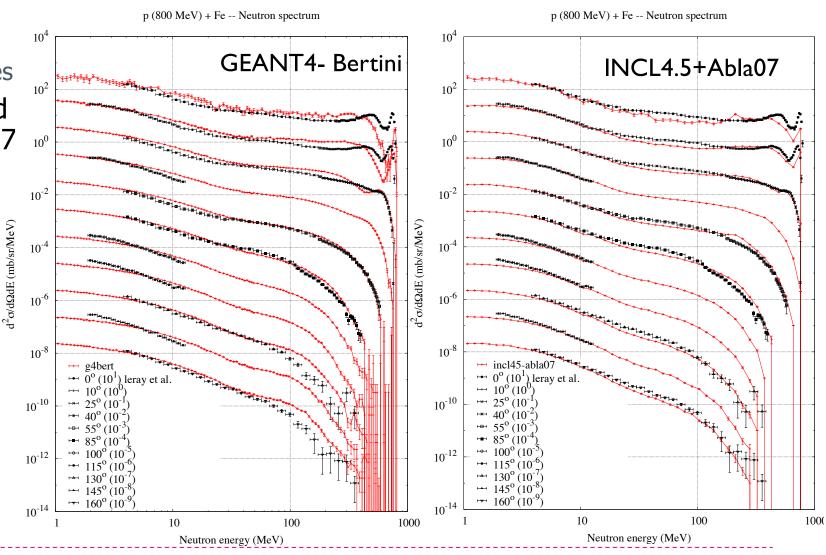
- Significant progress recently
 - More models in GENIE INCL++, GEANT4
 - More comparisons, e.g. transparency
 - Low energy hadrons, pions show strong model dependence (INCL best)
- No data for pion transparency at T_{π} < \sim 1 GeV, proton transparency data not sufficient; σ_{reac} improvement needed
 - New e4√ data will have important impact
- Significant model dependence remains
- FSI would be good candidate for theory interface
- Next frontier Sato-Lee-Nakamura (DCC)
 - Unified model with ~complete hN and NN (no medium corrections)
 - New Madagascar student implementing πN , ηN , $K\Lambda$, and $K\Sigma$

FSI has different meanings (unfortunate)

- Inclusive
- What theorists often do
- Empirical shift in ω
- Double counting?

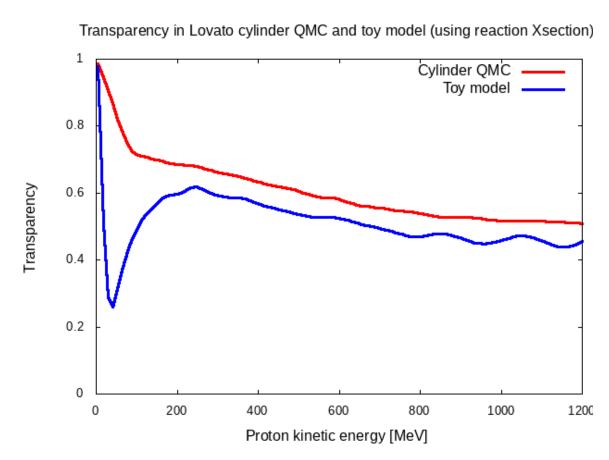

- Semi-inclusive (e.g. Udias)
- Good theory solution
- Mainly attenuation due to proton 'abs'

- Complete final state! (this talk)
- What experiments demand!
- Cascade does it all with approximations (free xs with corrections)


Problems III - pion production

- This is related to FSI because this is major source of hadrons at DUNE.
- Much attention to QE, much less to pion production
 - Commonly no medium effects (studied with pion data)
 - Models in US derived in 1980s (Rein Sehgal uses constituent quarks)
 - MAID advances in form factors not implemented except GiBUU
 - ▶ Imperfect nonresonant processes (often scaled DIS model BY)
 - No nonresonant/resonance interference (Kabirnizhad 1pi in NEUT)

IEAE study detail - double different xs



- ▶ 800 MeV
- Many angles
- GEANT4 and INCL+Abla07

Focus on transparency (pC)

- Isaacson et al. vs.Dytman et al. (plot from Jan Sobczyk)
- Core of standard cascade vs. their full result (cyl QMC)
 - Treatment of NN corr
 - difference in stepping
 - NN cross sections
- Very interesting to disentangle dependences

