DUNE Systematic Flux Uncertainties

Ian D. Kotler FRAS on behalf of the DUNE Collaboration APS DPH-PHENO 2024

May 14th, 2024

Content

- Introduction:
 - What is DUNE?
 - How does DUNE work?
 - Hadron Production in DUNE
 - Focusing Effects in DUNE
 - The Importance of Systematics
- Results
 - Modelling the DUNE Flux
 - Correlation Matrices
 - Individual Uncertainties
 - Total Uncertainties
 - Far to Near Flux Ratio
- Conclusions

What is **DUNE**?

- The Deep Underground Neutrino Experiment hosted at Fermilab
- Comprised of 1400+ collaborators across 35+ countries.

Physics goals include (but not limited to): Address Baryon Asymmetry of the Universe (BAU) • Measure δ_{CP} in lepton sector. Determine the neutrino mass ordering Sign of $\left|\Delta m_{32}^2\right|$? **Determine the octant of** θ_{23} . • Is θ_{23} greater or less than $\frac{\pi}{4}$? Near Detector Complex hosts a suite of rich physics programs. Suite of detectors {LAr, GAr, SAND, TMS, PRISM ...} And so much more! Interested in joining DUNE? Get started <u>here</u>.

How does DUNE work?

Hadron Production for DUNE н Graphite Μ а π^{-} Μ d u π^+ n u neutrino mode 0 r π^+ 0 n 0 e^+ K^+ n n р π^+ ν_e Α Target Α p^+ Α b $\overline{\nu_{\mu}}$ b S С π^{-} 0 S 0 u'n π^- 0 r antineutrino mode V b π^{-} r e b е K^{-} S р $\overline{v_e}$ r e p^+ π^+ **To Near Detector** Hadronization occurs as **Focus** hadrons protons impinge target Into the Decay Pipe

5 5/14/24 Ian D. Kotler for the DUNE Collaboration | DUNE Systematic Flux Uncertainties

Focusing Effects

6 5/14/24 Ian D. Kotler for the DUNE Collaboration | DUNE Systematic Flux Uncertainties

Drexel Di

Modeling the DUNE Flux

- Nominal flux is input into PPFX.
- Varies the flux parameters across 100 universes.
- Specialized reweighters and external inputs account for Hadron Production processes.
 PPFX Multi-Universe FHC v_u Flux

50

45

30

25

20

15

10

З

5

6

 v_{μ} flux / m^2 / GeV / PoT at 574 m

- Nominal flux is generated in g4lbne
- Varies nominal by engineering tolerance.
 - **Results in 2 universes,** $\pm 1\sigma$.

BFU Multi-Universe FHC ν_{μ} Flux

The Importance of Systematics

• See upcoming publication, "The DUNE Neutrino Flux Simulation" details on covariance.

8 5/14/24 Ian D. Kotler for the DUNE Collaboration | DUNE Systematic Flux Uncertainties

Determining the Correlations

• The Correlation Matrices <u>reveal the magnitude</u> of the relations amongst the various sources of uncertainty across <u>all</u> modes, detector locations and neutrino species.

Individual Uncertainties

• Taking the square root of the diagonals of each matrix yields the individual uncertainties.

Hadron Production			Beam Focusing		
neutrino	Far Det.	$ u_{\mu}$	neutrino	Far Det.	$ u_{\mu}$
Mode	Location	Species	Mode	Location	Species

Individual Uncertainties

• Taking the square root of the diagonals of each matrix yields the individual uncertainties.

neutrino	Near Det.	v_{μ}	neutrino	Near Det.	ν _μ
wode	Location	Species	Mode	Location	<u>Species</u>

Total Systematic Uncertainties

• Adding Hadron Production and Beam Focusing Covariances to obtain Total Beam Covariance.

The Far to Near Flux Ratio

FHC v_{μ} Far / Near Ratio % Uncertainties

13 5/14/24 Ian D. Kotler for the DUNE Collaboration | DUNE Systematic Flux Uncertainties

Conclusions

- DUNE is an accelerator-based neutrino experiment hosted at Fermilab
- Among DUNE's many goals includes determining:
 - δ_{CP} neutrino mass hierarchy
- octant of θ_{23}
- To achieve the high sensitivity required to measure parameters requires covariance matrices for all Systematic Uncertainties
- The covariance matrix encapsulates the all information regarding uncertainties and correlations.
- Hadron Production and Beam Focusing are the largest contributors to beam systematics uncertainties.

14 5/14/24 Ian D. Kotler for the DUNE Collaboration | DUNE Systematic Flux Uncertainties

Back Up Slides

Ian D. Kotler FRAS on behalf of the DUNE Collaboration APS DPH-PHENO 2024

May 14th, 2024 (2:30 - 2:45) pm David Lawrence Hall, 107 University of Pittsburgh

What are neutrinos?

- Fundamental particles of the SM.
- Colorless, neutral leptons
- 3 distinct flavors: v_e , v_{μ} , v_{τ}
- 3 distinct masses: v₁, v₂, v₃
- Can oscillate between flavors, governed by the PMNS matrix.

 $c_{23}c_{13}$

What is Hadron Production?

- Largest source of systematic uncertainty for DUNE flux prediction.
- Sources of Hadron Production in DUNE include:
 - **Protons impinging on Graphite target:** $p + {}^{12}C \rightarrow \pi^{\pm} + X$
 - Secondary Interactions of neutrons: $p + {}^{12}C \rightarrow p(n) + X$ n + ${}^{12}C \rightarrow \pi^{\pm} + X$
 - Hadron Absorption both inside and outside the target.
 - Secondary meson and nucleon interactions
 - And many others!
- Simulating these Hadron Production uncertainties requires:
 - Input data from dedicated experiments [NA49,SHINE, NA61*]
 - Package to Predict the Flux (PPFX), developed originally for Minerva by Leonidas Aliaga Soplin of U. Houston.

 $p + {}^{12}C \rightarrow K^{\pm} + X$

Beam Focusing Effects

2nd largest source of systematic uncertainty in DUNE flux prediction.

• Over 60 sources, all arising from engineering tolerances, such as:

- Horn Current (±300kA)
- Thickness of Water Layer cooling Horns.
- Scraping of proton beam against the Bafflet.
- Various characteristics of:
 - Proton Beam characteristics (Radius, Position, Angle, ...)
 - Target characteristics (Density, Position, Length, ...)
 - Horns A,B,C characteristics (Position, Ellipticity, Tilt, ...)
 - Decay Pipe characteristics (Radius, Position, Cross-Section, ...)

Calculating BFU Covariance

• Calculate individual covariances for each source of uncertainty (i) in both universes.

$$Cov_{BFU,+}^{(i)}(x_j, x_k) = \frac{\left(x_j^{(i)} - \bar{x}_j\right)\left(x_k^{(i)} - \bar{x}_k\right)}{\bar{x}_j \bar{x}_k}$$

• Total BFU Covariance is average of universe covariances.

$$\left\langle Cov_{BFU}^{(i)}\left(x_{j},x_{k},y_{j},y_{k}\right)
ight
angle =$$

$$\frac{1}{2} \left[Cov_{BFU,+}^{(i)} \left(x_j, x_k \right) + Cov_{BFU,-}^{(i)} \left(y_j, y_k \right) \right]$$

 Here we see the BFU Covariance is quite small indicating the magnitudes of the focusing uncertainties are likewise, small.

$$Cov_{BFU,-}^{(i)}\left(y_{j}, y_{k}\right) = \frac{\left(y_{j}^{(i)} - \bar{y}_{j}\right)\left(y_{k}^{(i)} - \bar{y}_{k}\right)}{\bar{y}_{j}\bar{y}_{k}}$$

ainties <u>Drexel</u> DUN

20 5/14/24 Ian D. Kotler for the Dune Collaboration | DUNE Systematic Flux Uncertainties

Calculating HP Covariance

• Calculate individual covariances for each source of uncertainty (i) in both universes.

$$\left\langle Cov_{HP}^{(i)}(z_j, z_k) \right\rangle = \frac{1}{N} \sum_{u=1}^{N} Cov_{HP}^{(i,u)}(z_j, z_k)$$

• Total BFU Covariance is average of universe covariances.

$$Cov_{\rm HP}^{(\text{total})}(z_j, z_k) = \sum_{i=0}^{N} \left\langle Cov_{\rm HP}^{(i)}(z_j, z_k) \right\rangle$$

$$\therefore \left\{ N = 9 \right\}$$

 Here we see the HP Covariance is likewise small indicating the magnitudes of the Hadron Production uncertainties are also, small.

21 5/14/24 Ian D. Kotler for the Dune Collaboration | DUNE Systematic Flux Uncertainties

HP Covariance Matrix

N = 100 100 universesu = [1, N] universe #

The Total Covariance

• Sum of the Hadron Production and Beam Focusing Covariance matrices.

0.05 1> >° RHC Mode [±]<ا Far Detector 0.04 ž |>^e $^{\circ}$ FHC Mode 0.03 [±] ž |>^e 0.02 $^{\circ}$ RHC Mode Near Detector |>= >= 0.01 |>^e >° FHC Mode |>[±] 0 >= \overline{v}_{μ} $v_e \overline{v}_e$ v, ve \overline{v}_{μ} $v_e \overline{v}_e$ v. v_u \overline{v}_{μ} vu v_u v. v_u ve FHC Mode FHC Mode RHC Mode RHC Mode Near Detector Far Detector

Total DUNE Flux Covariance

22 5/14/24 Ian D. Kotler for the Dune Collaboration | DUNE Systematic Flux Uncertainties

Total Flux Correlation

• The Total Correlation Matrix <u>reveals the magnitude</u> of the relations amongst the various sources of uncertainty across <u>all</u> modes, detector locations and neutrino species.

Total DUNE Flux Prediction Correlations

