Toward a Fast Simulation of Photon Transport in a PD Bar

Dave Muller SLAC 20 February, 2013

- Overview
- First Results
- Prospects

Task

Determine the probability that a photon emitted by the WLS is detected, as a function of z

Method: mirror → dust off some old code \rightarrow adapt to this application This is ~a fast simulation \rightarrow test against real sim, understand both \rightarrow fast turnaround for design studies Assumptions for today: \rightarrow rectangular acrylic bar immersed in LAr origin $n_{bar} = 1.495, n_{LAr} = 1.22$ $\Rightarrow \theta_{critical} = 54.7^{\circ}$ \rightarrow L = 225 cm, W = 2.54 cm,

WLS

SiPM

• total efficiency vs. z:

- → about 12%
- \rightarrow z-dependence very small for z>2T
- \rightarrow small loss in transmission through end for z>2T
- → from here on, take red points as reference

• now add a finite bulk absorption length:

- \rightarrow loss is substantial even for long λ
- \rightarrow z-dependence small for λ >2L, param with line
- \rightarrow but large for $\lambda < L$, param needs 2-3 exponentials
- → need clearest possible acrylic

• or finite reflectivity off the sides:

- → loss is substantial even for very high rs
- \rightarrow z-dependence small if typical # of bounces <1/(1-r_s)
- \rightarrow both increase rapidly as r_s decreases
- \rightarrow ...though it flattens at high z harder to param
- → need nicest possible acrylic surface

• or finite reflectivity off the mirror:

 \rightarrow for perfect λ , r_s, loss is (1-r_m)/2 (except for low z)

- \rightarrow ... with no z-dependence, easy to param
- \rightarrow becomes relatively less important as λ , r_s decrease
- → put modest effort into mirror

of course, these things add up:
 → a few random examples

 \rightarrow generally fairly rapid variation at low z \rightarrow ... flattening at higher z • what if we change the bar thickness?

 \rightarrow affects number of bounces; for perfect λ , r_m, T \rightarrow 2T

- \rightarrow no effect for r_s=1
- → the relative effect increases rapidly with decreasing r_s: 10% at r_s=0.999
 → 2x for r_s≥0.97

<u>Summary</u>

- decent start on a fast sim for photon transport
 - → need correct/appropriate input values
 - → welcome your input, requests for studies, improvements, etc.
 - → need to test against a real simulation
- can turn on / implement:
 - → different front/back/side reflectivities
 - → WLS spectrum/dispersion
 - → (small) scattering in bulk, at surfaces
- not (yet) considered:
 - → WLS efficiency, chance of photon entering bar
 - → SiPM efficiency
 - → number of photons reaching the WLS