Study of the Neutrino Magnetic Moment with the NO ν A Near Detector

New Perspectives Conference Fermilab July 8-9, 2024

Sarah Choate University of Iowa

This work is supported by DOE Grant No. DE-SC0010113 FERMILAB-SLIDES-24-0161-V

Introduction

Neutrinos are a coherent superposition of mass (ν_1 , ν_2 , ν_3) and flavor (ν_{μ} , ν_e , ν_{τ}) eigenstates

 \implies Neutrinos can oscillate between different flavor and mass states

$$\nu_{\mu} \longrightarrow \nu_{\tau}$$

Figure 1: After propagating some distance, a neutrino observed to be in the μ flavor state can be observed to be in the τ flavor state.

Some Current Neutrino Questions Are...

- 1. What are the precise values for the mixing angles?
 - Angle of rotation between flavor basis and mass basis, see Figure 2 for an example of a mixing angle for two flavor mixing
- 2. What are the precise values for the mass squared splittings?
 - Unclear which mass state is the heaviest, see Figure 3
- 3. What is the value of the CP violating phase?
 - + $\delta_{\rm CP} = 0$ rad indicates ν and $\bar{\nu}$ oscillate in the same way
- 4. Are neutrinos Dirac or Majorana fermions?

Figure 3: Mass state ordering.

The NuMI Off-axis ν_e Appearance (NO ν A) Experiment

Figure 4: Location of NOvA Near Detector at Fermilab and Far Detector in Ash River, Minnesota. The FD is 810.5 km from Fermilab [2]. Broad goal of NO ν A is to observe the oscillation of ν_{μ} to ν_{e} leading to science goals including [2]:

- 1. Precision measurement for $heta_{23}$ and Δm^2_{32}
- 2. Place constraints on $\delta_{\rm CP}$
- 3. Place constraints on neutrino mass ordering

Sarah Choate

The NO ν A Near Detector (ND)

Figure 5: Side view (top) and plan view (bottom) of NO ν A cavern in relation to MINOS and the NuMI Target Hall [2].

Figure 6: Top-down view of NO ν A ND in relation to the NuMI beamline and MINOS hall. The ND is ~1 km from the NuMI target [2].

Figure 7: ND sections [2].

- 1. Red = veto region
- 2. Green = fiducial region
- 3. Yellow = shower containment region
- 4. 10, 0.1 m thick steel plates form a muon catcher region

Sarah Choate

Measure the magnetic moment for a muon neutrino using $\text{NO}\nu\text{A}$ Near Detector data

Neutrino Magnetic Moment (ν MM) Theory

- Neutrinos are observed to be electrically neutral and should be according to the Standard Model (SM)
- SM also predicts neutrinos to be massless so it is known there must be some extension to account for neutrino masses
- A minimal extension of the SM also allows neutrinos to have a non-vanishing magnetic moment
- Arises at the quantum level
 - $\cdot\,$ Same source as the anomalous magnetic moment for the electron!
- + ν MM behaves differently for Dirac or Majorana neutrinos

Interaction

Figure 8: Coupling of a fermion with a photon (left) and coupling of a neutrino with a photon through higher order expansion with the blob encasing the vertex function, Λ (right) [3].

Coupling to a real photon gives physical meaning to the form factors contained in $\boldsymbol{\Lambda}$

- $\cdot \ \mathbb{f}_Q(0) = q \qquad \qquad \cdot \ \mathbb{f}_E(0) = \epsilon$
- $\cdot \ \mathbb{f}_{M}(0) = \mu \qquad \qquad \cdot \ \mathbb{f}_{A}(0) = \mathbb{a}$

 \implies From quantum loop effects, we get μ which is the ν MM [3]

uMM consists of a 3x3 matrix of values denoted by μ_{ij}

- $\cdot i = j$ representing diagonal terms
- $i \neq j$ representing transition terms

Dirac	٢	Majorana
$i = j \approx 3.2 \times i \neq j$ Negligi	$10^{-19} \left(\frac{m_i}{eV}\right) \mu_B$ Noble and the second	None $\approx \frac{-3ieG_F}{16\sqrt{2}\pi^2} (m_i + m_j) \Sigma_{\ell=e,\mu,\tau} \operatorname{Im}[U_{\ell i}^* U_{\ell j}] \frac{m_{\ell}^2}{m_W^2}$

[4]

 $\nu {\rm MM}$ Analysis

Analysis Method: ν -on-e Scattering

Figure 9: Examples of tree-level contributions for neutrino-lepton scattering according to the SM mediated through the exchange of either a W or Z boson. ℓ represents any charged lepton. For neutrino-electron scattering, the lepton would be an electron [5].

$\nu\text{-}\mathrm{on-e}$ Scattering Cross Section

The differential cross section for ν -on-e scattering to one loop is

$$\frac{\mathrm{d}\sigma_{\nu_{\ell}e^{-}}}{\mathrm{d}T_{e}} = \left(\frac{\mathrm{d}\sigma_{\nu_{\ell}e^{-}}}{\mathrm{d}T_{e}}\right)_{\mathrm{SM}} + \left(\frac{\mathrm{d}\sigma_{\nu_{\ell}e^{-}}}{\mathrm{d}T_{e}}\right)_{\mathrm{MAG}}$$

 T_e = recoil kinetic energy of the electron

$$\begin{bmatrix} \left(\frac{\mathrm{d}\sigma_{\nu_{\ell}e^{-}}}{\mathrm{d}T_{e}}\right)_{\mathrm{Mag}} & \propto \frac{1}{T_{e}} \\ \left(\frac{\mathrm{d}\sigma_{\nu_{\ell}e^{-}}}{\mathrm{d}T_{e}}\right)_{\mathrm{SM}} & \propto {T_{e}}^{2} \end{bmatrix}$$

 \implies Excess of events at low T_e , deviating from SM, is our ν MM signal [3]

Figure 10: Example of how the differential cross section changes with *T_e*. Plot from [6], yellow line indicates no magnetic contribution.

NO ν A Coverage for ν MM

Figure 11: Plot of how the differential cross section changes with T_e on a log-log scale for different values of ν MM. This is the same idea as the plot on the previous slide but this time includes the region that NO ν A is sensitive to. Plot from [7].

Sarah Choate

University of Iowa

Other Experiments

Figure 12: Upper limits on ν_{μ} from other experiments. These are indirect measurements from solar neutrinos while this work is focusing on making a direct measurement. Plot from [8].

University of Iowa

Analysis Method Overview

- Build on prior work done by Biao Wang (Southern Methodist University [6], University of Iowa) and Robert Kralik (University of Sussex)
- Utilize various cuts in order to extract the $\nu {\rm MM}$ signal out of the background
- Signal is a well reconstructed, single, final state electron
- Main background includes $\nu\text{-on-e}$ scattering events consistent with the SM
- Additional background includes:
 - + u_{μ} CC interactions
 - + ν_e CC interactions
 - NC interactions as π^0 can be misidentified as electrons

- 1. Near Detector (ND) Group
 - Generated event selection criteria
 - + $\nu \rm MM$ analysis is currently using a cut flow generated by the ND group
 - The signal for the ND group is $\nu\text{-}\text{on-e}$ scattering, which is part of our background
- 2. Light Dark Matter (LDM) Group
 - The background for the LDM group contains both $\nu\text{-}on\text{-}e$ scattering as well as νMM events

Enhanced ν -on-e sample:

- · Only ν -on-e and ν MM samples
- Needs to be scaled to match full SM background
 - scale = $3.70 \times 10^{20} / 1.72 \times 10^{24}$
 - Matching POT = background POT * scale

Full SM background sample:

* 1.39 \times 10^{21} POT

*POT = protons on target

Example Event Selection Plots: Pre-Selection Only

Figure 13: Plot showing ν MM signal, ν -on-e background, and all other background with respect to the reconstructed electron energy. No cuts have been applied, only pre-selection criteria so the signal and ν -on-e are dominated by other background. Sarah Choate University of Iowa

Example Event Selection Plots: Pre-Selection Only

Figure 14: Plot showing the background breakdown for the event selection after applying only preselection criteria. The event selection is dominated by ν_{μ} CC events, NC events, and NC events containing a π^{0} .

Example Event Selection Plots: End of Cut Flow

Figure 15: Same plots as the initial one, this time having applied the entire cut flow to decrease background and improve ν MM signal. Now the dominant background is ν -on-e scattering, however this is a well understood process.

- Optimize cut flow for ν MM analysis
- Gain a more complete understanding of the systematic uncertainties for this analysis

Long term:

- Obtain collaboration permission to look at data
- \cdot Get a result for the value of the neutrino magnetic moment

[1] Particle Data Group. Review of particle physics.

Progress of Theoretical and Experimental Physics, 2022(8):083C01, 08 2022.

- [2] D. S. Ayres et al.
 The NOvA Technical Design Report. 10 2007.
- [3] Carlo Giunti and Alexander Studenikin.
 Neutrino electromagnetic interactions: a window to new physics, 2015.
- [4] Studenikin Alexander.

Status and perspectives of neutrino magnetic moments. *Journal of Physics: Conference Series*, 718(6):062076, may 2016.

References ii

- [5] Oleksandr Tomalak and Richard J. Hill.
 Theory of elastic neutrino-electron scattering.
 Physical Review D, 101(3), February 2020.
- [6] Biao Wang.

Muon-neutrino electron elastic scatting and a search for the muon-neutrino magnetic moment in the nova near detector, 2017.

[7] Robert Kralik.

Measurement of the neutrino magnetic moment in the nova experiment, 2024.

[8] XENON1T Collaboration.

Excess electronic recoil events in xenon1t. *Physical Review D*, 102(7), October 2020.

Questions?

Backup

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\begin{pmatrix} U_{e_1} & U_{e_2} & U_{e_3} \\ U_{\mu_1} & U_{\mu_2} & U_{\mu_3} \\ U_{\tau_1} & U_{\tau_2} & U_{\tau_3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
with $c_{ij} = \cos_{\theta} ij$ and $s_{ij} = \sin_{\theta} ij$ where $i, j = 1, 2, 3$

Off-Axis

- Both the ND and FD are 14.6 mrad off axis from the beam
- ND off-axis design is a result of the FD being off-axis since the ND is a control for the FD and therefore needs to be as identical as possible
- Motivation for FD to be off axis is to generate a narrow neutrino energy spectra to increase flux and enhance background rejection at the FD [2]
- This choice is more important for the FD since it has an inherently lower flux than the ND

Figure 16: Number of ν_{μ} charged current events as a function of neutrino energy in the FD for various off-axis angles with and on-axis as reference [2].

Assuming Lorentz and electromagnetic gauge invariance Λ is given by

 $\Lambda_{\mu}(q) = \mathbb{f}_{Q}(q^{2})\gamma_{\mu} - \mathbb{f}_{M}(q^{2})i\sigma_{\mu\nu}q^{\nu} + \mathbb{f}_{E}(q^{2})\sigma_{\mu\nu}q^{\nu}\gamma_{5} + \mathbb{f}_{A}(q^{2})(q^{2}\gamma_{\mu} - q_{\mu}\not{q})\gamma_{5},$

Coupling to a real photon such that the four-momentum of the photon is zero, q = 0 gives physical meaning to the form factors

- $\cdot \mathbb{f}_Q(0) = q \qquad \cdot \mathbb{f}_E(0) = \epsilon$
- $\cdot \ \mathbb{f}_{M}(0) = \mu \qquad \qquad \cdot \ \mathbb{f}_{A}(0) = \mathbb{a}$

 \implies From quantum loop effects, we get μ which is the ν MM [3]

Assuming the electron is at rest in the lab frame,

- 1. Kinetic energy of the recoil electron, T_e
- 2. Recoil angle with respect to the neutrino beam, χ

$$T_e \le \frac{2E_\nu^2}{2E_\nu + m_e}$$
$$\cos \chi = \frac{E_\nu + m_e}{E_\nu} \left(\frac{T_e}{T_e + 2m_e}\right)^{1/2}$$

[3]

To ensure that we do have a signal since it is so suppressed, we can normalize the plot

Figure 17: There is both a ν MM signal and ν -on-e background. They just are not visible prior to the cut flow without normalizing.