

FERMILAB-SLIDES-24-0148-PPD

Three-Flavor Neutrino Oscillations at NOvA

Brajesh Choudhary, Ishwar Singh, University of Delhi, Delhi, India

Louise Suter, Fermi National Accelerator Laboratory, US

On behalf of the NOvA Collaboration

New Perspectives Meeting 2024 Fermi National Accelerator Laboratory July 8-9, 2024

The NOvA Experiment

- NuMI Off-axis ν_e Appearance Experiment
 - NuMI: Neutrinos at the Main Injector
 - Off-axis: Detectors situated 14.6 mrad off-axis to beam direction
 - $\nu_e(\bar{\nu}_e)$ appearance and $\nu_\mu(\bar{\nu}_\mu)$ dis-appearance
 - Functionally identical liquid scintillation detectors, located 809 km apart
- Primary Goals:
 - Measure neutrino oscillation parameters
 - Resolve neutrino mass ordering
 - Resolve octant degeneracy
 - Measure δ_{CP} , the CP-violating phase

The NuMI beam line at Fermilab provides an intense $\nu/\bar{\nu}$ beam

Beyond Neutrino Oscillations

- Non-standard interactions
- Neutrino cross-sections
- Sterile neutrinos
- Magnetic monopoles
- Dark matter
- And many more!

Check out Anna Cooleybeck's talk

How to Measure Neutrino Oscillations?

• We compare the far detector neutrino candidates with simulated predictions to extract neutrino oscillation parameters

Oscillating Neutrinos: from https://neutrino.physics.iastate.edu/project/dune

Selecting Neutrino Candidates

• The full far detector selection cut is a combination of quality, containment, cosmic rejection, and the event-classifier (CNN) cuts

Extrapolation

• The Near Detector Data/MC ratios are used to correct the Far Detector predictions

Pt Extrapolation

Extrapolation is divided further in the bins of lepton transverse momentum, *p_t* to account for the difference in ND and FD acceptance

New Perspectives Meeting, Fermilab, July 8-9, 2024

• Extrapolation helps in constraining systematic uncertainties

Enhancing Sensitivity to Oscillations

 $\nu_{\mu}/\bar{\nu}_{\mu}$ Sample

 $\nu_e/\bar{\nu}_e$ Sample

High PID

1- σ syst.

range

eripheral

Core

Near Detector Spectra

New Perspectives Meeting, Fermilab, July 8-9, 2024

5

Far Detector $\nu_{\mu}(\bar{\nu}_{\mu})$ Observations

• Observed $\nu_{\mu}(\bar{\nu}_{\mu})$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6 × 10²⁰ POT and anti-neutrino beam exposure of 12.5 × 10²⁰ POT)

Far Detector $\nu_e(\bar{\nu}_e)$ Observations

• Observed $\nu_e(\bar{\nu}_e)$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6 × 10²⁰ POT and anti-neutrino beam exposure of 12.5 × 10²⁰ POT)

Fitting Procedure

• We perform a joint fit to $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance and $\nu_e/\bar{\nu}_e$ appearance data to extract the oscillation parameters

Results

	Frequentist results (w/ Daya Bay 1D θ ₁₃ constraint)				
	Norm	al MO	Invert	ted MO	
Δm_{32}^2 / 10 ⁻³ eV ²	+2.433	+0.035 -0.036	-2.473	+0.035 -0.035	
sin²θ ₂₃	0.546	+0.032 -0.075	0.539	+0.028 -0.075	
δ _{CP}	0.88 π		1.51 π		
Rejection significance (σ)			1.36		

Results Contd.

The most precise measurement of Δm_{32}^2 .

Conclusions

- Latest three-flavor neutrino oscillation results from 10 years of NOvA data were presented
- Mild preference (prob=69%) to Upper Octant with reactor constraints on θ_{13}
- Mild preference to normal mass ordering (posterior prob. = 87%)
- The most precise single experiment measurement of Δm_{32}^2 (precision=1.5%)
- Frequentist best-fit values

$$\Delta m_{32}^2 = +2.433^{+0.035}_{-0.036} \times 10^{-3} \text{ eV}^2$$
$$\sin^2(\theta_{23}) = 0.546^{+0.032}_{-0.075}$$

The NOvA Collaboration

Back Up

Near-to-Far Extrapolation

- Functionally identical detectors cancel out systematic uncertainties on the best fit neutrino oscillation parameters
- The near detector (ND) data-MC differences are extrapolated in true energy bins to provide datadriven predictions of un-oscillated ν_{μ} ($\bar{\nu}_{\mu}$) and oscillated ν_{e} ($\bar{\nu}_{e}$) events at the far detector (FD)
- The ν_{μ} ($\bar{\nu}_{\mu}$) extrapolation is divided into 4 hadronic energy fraction quartiles to improve the sensitivity of the experiment
- Extrapolation is further divided into 3 bins of final state lepton transverse momentum (p_t) which takes into account the neutrino interaction mis-modeling and the differences in ND and FD

Uncertainties on FD Predictions

<

Selection

20

Uncertainties on Oscillation Parameters

Source of Uncertainty	$\sin^2\theta_{23}$	δ_{CP}/π	$ \Delta m^2_{32} \; (imes 10^{-3} \; { m eV}^2)$
Beam Flux	+0.00042 / -0.00069	+0.0012 / -0.011	+0.00053 / -0.0012
Detector Calibration	+0.0033 / -0.017	+0.014 / -0.17	+0.013 / -0.016
Detector Response	+0.00031 / -0.0043	+0.004 / -0.037	+0.0016 / -0.0026
Lepton Reconstruction	+0.0027 / -0.0046	+0.007 / -0.034	+0.0083 / -0.014
Near-Far Uncor.	+0.0025 / -0.0024	+0.0072 / -0.043	+0.0022 / -0.0034
Neutrino Cross Sections	+0.0031 / -0.0051	+0.018 / -0.11	+0.0058 / -0.011
Neutron Uncertainty	+0.0028 / -0.00075	+0.0056 / -0.011	+0.0022 / -0.0041
Systematic Uncertainty	+0.0067 / -0.019	+0.027 / -0.21	+0.017 / -0.024
Statistical Uncertainty	+0.023 / -0.083	+0.081 / -0.76	+0.032 / -0.044

Table: Summary of uncertainties on Ana2024 frequentist joint best-fit point, evaluated at the NOUO best-fit values i.e. $\sin^2\theta_{23} = 0.55$, $\delta_{CP}/\pi = 0.88$, and $|\Delta m_{32}^2|$ (×10⁻³ eV²) = 2.43.

FD $\nu_{\mu}(\bar{\nu}_{\mu})$ Events By Quartiles

Ratios to No Oscillations

