Three-Flavor Neutrino Oscillations at NOvA

Monday, 8 July 2024 11:15 (15 minutes)

NOvA, is a two-detector, long-baseline neutrino oscillation experiment located at Fermilab, Batavia, IL, USA. It is designed primarily to constrain neutrino oscillation parameters such as the atmospheric mass squared splitting, Δm_{32}^2 , the mixing angle, θ_{23} , neutrino mass hierachy, and the CP-violating phase, δ_{CP} , using ν_{μ} ($\bar{\nu}_{\mu}$) disappearance and ν_e ($\bar{\nu}_e$) appearance data. NOvA receives a high purity 900 KW instense beam of neutrinos and anti-neutrinos from Fermilab's Neutrinos at Main Injector (NuMI) beamline. NOvA used functionally identical finely granulated liquid scintillation detectors, both situated 14.6 mrad off-axis to the beam direction. The NOvA near detector observes un-oscillated ν_{μ} ($\bar{\nu}_{\mu}$) and beam ν_e ($\bar{\nu}_e$) events, while the far detector, which is situated 809 km away from the near detector, records un-oscillated ν_{μ} ($\bar{\nu}_{\mu}$) and oscillated ν_e ($\bar{\nu}_e$) events. We will discuss the neutrino oscillation analysis strategy at NOvA and the latest three-flavor oscillation results from 10 years of NOvA data in this talk.

Primary authors: CHOUDHARY, Brajesh (University of Delhi); SINGH, Ishwar (University of Delhi); SUTER, Louise (FNAL)

Presenter: SINGH, Ishwar (University of Delhi)

Session Classification: NOvA