

Performance of the PS module for particle p_T discrimination in the CMS Phase-2 Outer Tracker

Olivia Gzamouranis New Perspectives 8 July 2024

In partnership with:

Phase-2 Outer Tracker Upgrade at the HL-LHC

HL-LHC

- The Large Hadron Collider (LHC) at CERN will be upgraded to the High-Luminosity LHC (HL-LHC) in the late 2020s.
- The upgrade will reach instantaneous peak luminosities of 7.5 x 10³⁴ cm⁻²
- Allows for 10x more data than the what is currently collected
- Will have a center mass of energy of ~14 TeV

CMS Phase-2

- The upgrade will increase the LHC radiation levels, so new trackers are also required.
- Detector granularity will increase to reduce occupancy
- The tracker will be replaced and the new one will provide track information to the L1 trigger.

Stubs and Stub Creation

- In order to provide track information to the L1 trigger, not all tracks are able to be reconstructed.
- A selected subset of tracks that correspond to a particle with high p_T will be used.
- It is expected that the most interesting events will contain higher p_T tracks

- A stub is a pair of coordinated hits on both the pixel and strip sensors in the module.
- Particles with a momentum > 2GeV are what we are looking for!
- The stub creation conditions can be changed by altering the window of strip sensors that can create a stub for each pixel hit.
- Stubs are then sent to the L1 trigger for selection

The PS Module Irradiation

- To mimic the environment of the HL-LHC, the module was irradiated.
- Comparing the irradiated and non-irradiated data allows us to see how the sensors will function in the HL-LHC
- A 5 x 2 cm portion of the MAPSA and strip-sensor sandwich was irradiated to target fluence of 1.4 x 10¹⁵n_{eq} per cm²

2023 Test Beam at Fermilab Test Beam Facility

- Proton beam with momentum of 120 GeV
- Telescope operates with spatial resolution of 7µm in x and y
- Telescope consists of 12 strip plane and 4 pixel planes
- Rotation of the module was required to study the stubs.

Alignment

- In order to analyze the test beam data, the exact position of each detector had to be reconstructed.
- By using a program called Monicelli, we were able to determine the geometric location of the detectors and reconstruct the tracks of particles passing through.
- Optimize residual distribution
- Requires the precision of a few microns

🌫 Fermilab

Alignment

 During the alignment process, a subset of the particle tracks are reconstructed and used to find geometry parameters.

Clusters 🗸	Tracks	Calibrated				S	ettings Lo	ad St	ive As	Save	MonicelliD	efaults		
tatus: Creating	a residual d	stributions succ	essful											
User Mode	Expert Mor	te Summary	Controls	Mode 1	felescope	Picture Mode	Help abour	modes						
Raw Data	Calibration	s Clusters	Raw Align	ment Tra	ack Finder	Residuals	Fine Alig	ment	DUT Alig	prment	Geometry	Contextu	al Help	Event
Loaded Geo fil	e N	o file loaded							Load			WAR	NING: Mak	ce a c
XML Geometry	rfie 🚾	3_06_June_PSN	lodule/.J2023	06_June_PS	Module/Gr	cometries/Run78	579_22_05_20	124 xml	Load	Chang	e Sav	e of th	e geometr aina the v	ry be ralue
Geo Geometry	file /d	ata/TestBeam/200	3_06_June_F	SModule/Mo	nicellOutp	ut/Run78679_Me	rged_tdc_6.ge		Copy	Copy to			the tabl	e!
Correction pa	arameters	Detectors	Partitions								_			
Detecto	r .	Total	Base	Corr	ection	Tot	al Bar	se (Correction	n	Tot	al Bas	e Co	rrect
	A	pha 0	= 0.0000	+ 0.0000	deg l	Beta 0	= 0.0000	+ 0.000	o deg	Gamma	90.0481	= 90.0000	+ 0.0481	d
Station: 0 -	Plag: 0	x -792.995	= 0.0000	+792.995	um	y 15584.1	=)326.5000	+1742-4	200 um	2	-39.3	= -39.3000	+ 0.0000	0
	A	pha 0.0007	= 0.0000	+ 0.0007	deg	Beta 1.2316	= 0.0000	+ 1.231	e deg	Gamma	0.0935	= 0.0000	+ 0.0935	_
Station: 0 -	Plag 1	X 22169.4	=)151.2000	+1018.210	um	y -1092.01	= 0.0000	+.092.0	100 um	2	-38.7	= -38.7000	+ 0.0000	-
Station 0	Al Diax 2	pha 0	= 0.0000	+ 0.0000	deg	Beta 0	= 0.0000	+ 0.000	o deg	Gamma	90.0663	= 90.0000	+ 0.0663	-
		a 0.0016		10.004	alara I	Pete 0 5017			alara	Camera	0.1707		. 0.1207	=j
Station: 0 -	Plag 3	X 22885.5	= 881.3000	+1004.150	ium i	y -1033.5	= 0.0000	+.033.5	000 um	2	-26.6	= -26.6000	+ 0.0000	۳,
	A	pha o	= 0.0000	+ 0.0000	deg	Beta o	= 0.0000	+ 0.000	o deq	Gamma	90.401	= 90.0000	+ 0.4010	5
Station: 0 -	Plag 4	× -2244.13	= 0.0000	+1244.130	um	y 17968.4	= 042.6000	+ 074.2	200 um	2	-15.1	= -15.1000	+ 0.0000	5
	A	pha 0.0094	= 0.0000	+ 0.0094	deg	Beta 1.8244	= 0.0000	+ 1.824	deg	Gamma	0.3825	= 0.0000	+ 0.3825	
Station: 0 -	Plag: 5	x 23775.5	= 298.2000	+ 477.280	um	y -897.839	= 0.0000	+ 897.8	390 um	2	-14.5	= -14.5000	+ 0.0000	
	A	pha o	= 0.0000	+ 0.0000	deg	Beta o	= 0.0000	+ 0.000	o deg	Gamma	89.651	= 90.0000	+ -0.3490	
Station: 1 -	Plag 0	X 1467.02	=:200.0000	+-732.983	um	y 20509.3	=)702.2000	+)192.5	oso um	2	63	= 63.0000	+ 0.0000	-
Station 1.	Al Plan 1	pha 0.0006	= 0.0000	+ 0.0006	deg	Beta -0.2156	= 0.0000	+ -0.21	56 deg	Gamma	-0.3015	= 0.0000	+ -0.3015	
		a antoini		10.000	alara I	Bata 0.0001		10.000	alara	Commo	0010			Ľ
Station: 1 -	Plag 2	X 2552.17	= 299.8500	+ 252.323	um	y 20547.9	=)378.0000	+ 169.9	370 um	2	75.7	= 75.7000	+ 0.0000	
	A	nha 0.0002	= 0.0000	+ 0.0002	dea	Reta 0.5267	= 0.0000	+ 0.526	7 dea	Gamma	-0.0242	= 0.0000	+ -0.0242	2 0
Distantia All				Sum Anele	Corr. to Br	in Su	m Trane Co	r to Base		Sum All C	orr to Base	Cle	or All Corre	ctics

The parameters measured in Monicelli are three spatial rotations and three translations

- The alignment returns the angles and translations at which the detector has been placed
- Once alignment is done, we use the alignment parameters to reconstruct all tracks.

e	Main Controls P	anel		×					
Browse ata/TestBeam/2023_06_June_PSModule/MonicelliOutput/Run78667_Merged_tdc_6.root Geo File:06_June_PSModule/MonicelliOutput/Run78667_Merged_tdc_6.geo									
	100%	Abort	Events:	17338					
🗸 Clusters 🖌 Tracks 🗸 Calibrated	Se	ttings Load Save As Save	MonicelliDefaults						
Status: Creating residual distributions successful									
User Mode Expert Mode Summary	Controls Mode Telescope Picture Mode	Help about modes							
Raw Data Calibrations Clusters	Raw Alignment Track Finder Residuals	Fine Alignment DUT Alignment	Geometry Contextual Help	Event 4					
Residuals	Residual Plots		Exclude detectors fro	om filters					
Ume R Unc. R.K Exclude Dee Const. Residuals Station: 0 - Plag Kalman residuals Station: 0 - Plag Ret V FAAL Station: 0 - Plag Align! DUTs Station: 0 - Plag Align! DUTs Station: 0 - Plag Align using: Station: 1 - Plag Station: 1 - Plag Histogram mean Station: 1 - Plag Station: 1 - Plag Station: 1 - Plag	Correlations U. Residuals range 1 C. Residuals Fall U. 1 Correlations Min -25 2 Pulls Max +25 5 Charge Passing Events: 11699 1 Tracks/event: 11699 1 ZD Residuals vs. Coordinate	ock Chi2/OOF: Min Points: Max Plane Points: Max Tracks/Event: 17338 Max Cluster Size 1 Plot Only Cluster Size: Residuals vs. Coordinate Set Lif	Station: 0 - Plaq; 0 50.0 ⇒ Station: 0 - Plaq; 1 19.9 ⇒ Station: 0 - Plaq; 3 5.⇒ ⇒ Station: 0 - Plaq; 4 1.0 > Station: 0 - Plaq; 4 1.0 > Station: 0 - Plaq; 4 2.⇒ > Station: 0 - Plaq; 4 1.⇒ > Station: 0 - Plaq; 4 2.⇒ > Station: 1 - Plaq; 1 2.⇒ > Station: 1 - Plaq; 2 Station: 1 - Plaq; 3 > Station: 1 - Plaq; 3 mts Concextual Help	V					

Module Placement

- In CMS, there is a magnetic field of 3.8T that bends the trajectory of the charged particles.
- In order to mimic the effects of this magnetic field at the Fermilab test beam, the module started orthogonally to the beam was rotated with respect to the beam direction.
- For small angles beta (small bending =high momentum particle) stub reconstruction efficiency is higher.

Stub Reconstruction Efficiency v.s. Angle of Rotation (Irradiated)

Horizontal

PS Module

Transverse Momentum

The transverse p_T values were calculated using the equation:

P_T[GeV]≈ (0.57 · R[m])/(sinβ)

R=0.372m is the radial position of the module inside the tracker in the first layer, and β is the angle at which the module was placed in relation to the beam.

- Can see how accurate the module is in creating stubs from high momentum events
- Strip windows of 3 and 4 are fully efficient for 2 GeV tracks

Stub Reconstruction Efficiency v.s. p_T (Not Irradiated)

Stub Reconstruction Efficiency v.s. p_T (Irradiated)

Summary

- Due to the upgrade to the LHC, new detectors will be required to track particle momentum
- These detectors will be able to provide stubs to the L1 triggers, allowing it to do online track reconstruction
- The PS module was built, irradiated and tested at Fermilab
- Analysis showed that the module works as expected

Thank you for your attention

Plotting

- Plots were fit with an inverse error function, allowing effective p_T threshold and resolution to be calculated.
- These values allow
- The reconstructed tracks from Monicelli were used to plot the stub reconstruction efficiency for each angle the module was placed at, as well as for the transverse momentum.

Strip # and level of irradiation	Effective p⊤	Resolution	Sigma Value
2 Strip (Not Irradiated)	1.55	24.1%	0.374
2 Strip (Irradiated)	1.65	31.7%	0.523
3 Strip (Not Irradiated)	1.2	21.9%	0.162
3 Strip (Irradiated)	1.3	24.2%	0.302
4 Strip (Not Irradiated)	1.55	16.2%	0.162
4 Strip (Irradiated)	0.95	16.2%	0.154

