

Muon $g-2$ in 10 minutes

Samuel Grant

(on behalf of the $g-2$ collaboration)
New Perspectives 2024

What is $g-2 ?$

- A charged fermion will react to an external magnetic field: its spin will precess about the field lines.

- The rate of precession depends on the size of the magnetic dipole moment, μ

$$
\frac{d \vec{s}}{d t}=\vec{\mu} \times \vec{B}
$$

- Which in turns depends on a dimensionless "g-factor"

$$
\vec{\mu}=g\left(\frac{q}{2 m}\right) \vec{s}
$$

What is $g-2 ?$

- Dirac found the g-factor to be equal to 2 at leading order, but higher order diagrams also contribute, making $g=2.002331 \ldots$

- $g-2$ encodes all possible interactions between the fermion and the magnetic field!

Why muons?

- Sensitivity to the "new physics" mass scale goes with the fermion mass squared, so muon $g-2$ is $\underline{40,000}$ times more sensitive to new heavy particles than electron $g-2$; and
- It presents a persistent anomaly when compared with the Standard Model, more on this later...

Measuring $g-2$

- Store polarized muons in a storage ring with a vertical B-field.
- The cyclotron and spin frequencies are proportional to B.

$$
\overrightarrow{\omega_{c}}=-\frac{e \vec{B}}{m \gamma} \quad \overrightarrow{\omega_{s}}=-g \frac{e \vec{B}}{2 m}-(1-\gamma) \frac{e \vec{B}}{m \gamma}
$$

- The difference in frequency depends directly on $g-2$ and B.

$$
\vec{\omega}_{a}=\vec{\omega}_{s}-\vec{\omega}_{c}=-\left(\frac{g-2}{2}\right) \frac{e \vec{B}}{m} \quad a_{\mu}=\frac{g-2}{2}
$$

- The spin rotates relative to the momentum vector at the difference frequency, ω_{a}.
- Measure ω_{a}, measure B, measure $g-2$!

$g>2$

Momentum Spin
n

The magnetic field

- 14 m diameter, 1.45 T superconducting magnet.
- ~700 metric tons! Moved from BNL in New York.
- Muons are stored inside a C-shaped crosssection.
[ppm]

The beam

- We receive $3.094 \mathrm{GeV} / \mathrm{c}$ polarized muons from the Fermilab accelerator complex.
- μ^{+}are produced via upstream π^{+}decay.

Injection

r en

The kick

- Three fast electromagnetic kickers set the beam on a stable orbit.

Focusing

- Four set of electrostatic quadrupole plates provide vertical focusing.
- The magnetic field provides net radial focusing.

Calorimeters

- Twenty-four calorimeters measure the time and energy spectrum of decay positrons falling out of the magnetic field.
- Charged particles produce Cherenkov light in a 9 -wide x 6 -high array of lead-fluoride crystals, sensed by silicon photomultipliers.

Trackers

- Two in-vacuum straw tracker detectors measure decay positron position and momentum.
- 2048 Mylar straws enclosing argon-ethane atmosphere. A sense wire, surrounded by a radial electric field, records hits which are reconstructed into tracks.
- Essential for understanding our beam!

Measuring the magnetic field

- The field is measured with a suite of fixed and mobile NMR probes.

Field variation around the ring is <1 part-per-million!

Measuring spin precession

- High energy decay positrons are preferentially emitted in the direction of the muon spin vector.
- Count hits landing in the calos above some energy threshold: the resulting oscillation is at ω_{a} !

Measuring spin precession

- High energy decay positrons are preferentially emitted in the direction of the muon spin vector.
\circ Count hits landing in the calos above some energy threshold: the resulting oscillation is at ω_{a} !

Fit to a Run-3 "wiggle plot".

Data taking (2018-2023)

- Exceeded proposal goal for collected positrons and completed operations last year.
- Latest results encompass Run-2/3, Run-4/5/6 still to come...

Latest results (Run-2/3)

Unblinding Run-2/3 in July 23!

- Excellent agreement with previous results and an uncertainty of 215 ppb , which is mostly statistical!
- FNAL dominates the world average, which has a combined uncertainty on Muon $g-2$ of 190 ppb!
- For context, if $\$ 1.00$ comprised 190 ppb of your bank balance, you would have $\$ 5,263,157.89 \ldots$

Future results

- Full dataset expected to be published in 2025 (2x precision).

More physics results to come:

- Muon EDM search!
- BSM CPT/LV \& Dark Matter searches!

A puzzle for theorists

- The non-perturbative "hadronic vacuum polarization" (HVP) contribution to Muon $g-2$ is tricky to handle.

- Official data driven result using $e^{+} e^{-} \rightarrow$ hadrons scattering cross sections indicate a $>5 \sigma$ anomaly.
- Lattice QCD simulations indicate consistency with the SM.
- New $e^{+} e^{-}$measurements disagree with numerous previous measurements and confuse things further.
- Something has to give, stay tuned!

A. Keshavarzi

IMPORTANT: THIS PLOT IS VERY ROUGH!

- TI White Paper result has been substituted by CMD-3 only for $0.33 \rightarrow 1.0 \mathrm{GeV}$.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes \rightarrow should not be taken as final!

Thanks for listening!

Extra slides

Full treatment of ω_{a}

The full treatment of ω_{a} goes as follows:

Second term to zero if the momentum is set to the magic momentum ($3.094 \mathrm{GeV} / \mathrm{c}, \gamma=29.3$).

Third term goes to zero if the momentum vector is perpendicular to the field (the pitch is zero).

$$
\overrightarrow{\omega_{a}}=\frac{e}{m}\left[a_{\mu} \vec{B}\right.
$$

Systematics

$$
\frac{\omega_{a}}{\omega_{p}}=\frac{\omega_{a}^{m}}{\omega_{p}^{m}} \frac{1+C_{e}+C_{p}+C_{p a}+C_{d d}+C_{m l}}{1+B_{k}+B_{q}}
$$

Quantity	Correction $[\mathrm{ppb}]$	Uncertainty $[\mathrm{ppb}]$
ω_{a}^{m} (statistical)	-	201
ω_{a}^{m} (systematic)	-	25
C_{e}	451	32
C_{p}	170	10
$C_{p a}$	-27	13
$C_{d d}$	-15	17
$C_{m l}$	0	3
$f_{\text {calib }}\left\langle\omega_{p}^{\prime}(\vec{r}) \times M(\vec{r})\right\rangle$	-	46
B_{k}	-21	13
B_{q}	-21	20
$\mu_{p}^{\prime}\left(34.7^{\circ}\right) / \mu_{e}$	-	11
m_{μ} / m_{e}	-	22
$g_{e} / 2$	-	0
Total systematic	-	70
Total external parameters	-	25
Totals	622	215

