

Muon g - 2 in 10 minutes

Samuel Grant

(on behalf of the g-2 collaboration)

New Perspectives 2024

What is g - 2?

• A charged fermion will react to an external magnetic field: its spin will precess about the field lines.

 $\circ~$ The rate of precession depends on the size of the magnetic dipole moment, $\mu~$

$$\frac{d\vec{s}}{dt} = \vec{\mu} \times \vec{B}$$

 $\circ~$ Which in turns depends on a dimensionless "g-factor"

$$\vec{\mu} = g\left(\frac{q}{2m}\right)\vec{s}.$$

What is g - 2?

• Dirac found the g-factor to be equal to 2 at leading order, but higher order diagrams also contribute, making g = 2.002331...

 \circ g-2 encodes <u>all possible</u> interactions between the fermion and the magnetic field!

Why muons?

- Sensitivity to the "new physics" mass scale goes with the fermion mass squared, so muon g 2 is <u>40,000</u> times more sensitive to new heavy particles than electron g 2; and
- o It presents a persistent anomaly when compared with the Standard Model, more on this later...

Measuring g-2

• Store polarized muons in a storage ring with a vertical B-field.

• The cyclotron and spin frequencies are proportional to B.

$$\vec{\omega_c} = -\frac{e\vec{B}}{m\gamma} \qquad \vec{\omega_s} = -g\frac{e\vec{B}}{2m} - (1-\gamma)\frac{e\vec{B}}{m\gamma}$$

• The difference in frequency depends directly on g - 2 and B.

$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -\left(\frac{g-2}{2}\right)\frac{e\vec{B}}{m} \qquad a_\mu = \frac{g-2}{2}$$

- The spin rotates relative to the momentum vector at the difference frequency, ω_{a} .
- Measure ω_a , measure B, measure g 2!

The magnetic field

- 14 m diameter, 1.45 T superconducting magnet.
- ~700 metric tons! Moved from BNL in New York.
- Muons are stored inside a C-shaped crosssection.

The beam

- We receive 3.094 GeV/c polarized muons from the Fermilab accelerator complex.
- $\circ \mu^+$ are produced via upstream π^+ decay.

Injection

 Muons are injected through a field cancelling superconducting inflector magnet.

The kick

• Three fast electromagnetic kickers set the beam on a stable orbit.

Samuel Grant

Focusing

- Four set of electrostatic quadrupole plates provide vertical focusing.
- $\circ\,$ The magnetic field provides net radial focusing.

Calorimeters

- Twenty-four calorimeters measure the time and energy spectrum of decay positrons falling out of the magnetic field.
- Charged particles produce Cherenkov light in a 9-wide x 6-high array of lead-fluoride crystals, sensed by silicon photomultipliers.

Trackers

- Two in-vacuum straw tracker detectors measure decay positron position and momentum.
- 2048 Mylar straws enclosing argon-ethane atmosphere. A sense wire, surrounded by a radial electric field, records hits which are reconstructed into tracks.
- Essential for understanding our beam!

Measuring the magnetic field

 The field is measured with a suite of fixed and mobile NMR probes.

ring is <1 part-per-million!

Measuring spin precession

• High energy decay positrons are preferentially emitted in the direction of the muon spin vector.

 \circ Count hits landing in the calos above some energy threshold: the resulting oscillation is at ω_a !

Measuring spin precession

 \circ High energy decay positrons are preferentially emitted in the direction of the muon spin vector.

 \circ Count hits landing in the calos above some energy threshold: the resulting oscillation is at ω_a !

Fit to a Run-3 "wiggle plot".

Data taking (2018-2023)

o Exceeded proposal goal for collected positrons and completed operations last year.

• Latest results encompass Run-2/3, Run-4/5/6 still to come...

Samuel Grant

Latest results (Run-2/3)

- o Excellent agreement with previous results and an uncertainty of 215 ppb, which is mostly statistical!
- \circ FNAL dominates the world average, which has <u>a combined uncertainty on Muon g 2 of 190 ppb!</u>
- For context, if \$1.00 comprised 190 ppb of your bank balance, you would have \$5,263,157.89 ...

Future results

 $_{\odot}\,$ Full dataset expected to be published in 2025 (2x precision).

More physics results to come:

- $\circ\,$ Muon EDM search!
- o BSM CPT/LV & Dark Matter searches!

Samuel Grant

A puzzle for theorists

• The non-perturbative "hadronic vacuum polarization" (HVP) contribution to Muon g - 2 is tricky to handle.

р щ И И И И И

- Official data driven result using e^+e^- → hadrons scattering cross sections indicate a > 5 σ anomaly.
- $\,\circ\,$ Lattice QCD simulations indicate consistency with the SM.
- \circ New e^+e^- measurements disagree with numerous previous measurements and confuse things further.
- o Something has to give, stay tuned!

A. Keshavarzi

IMPORTANT: THIS PLOT IS VERY ROUGH!

- + TI White Paper result has been substituted by CMD-3 only for 0.33 \rightarrow 1.0 GeV.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes → should not be taken as final!

Thanks for listening!

Full treatment of ω_a

The full treatment of ω_a goes as follows:

Second term to zero if the momentum is set to the **magic momentum** (3.094 GeV/c, γ =29.3).

Third term goes to zero if the momentum vector is perpendicular to the field (**the pitch is zero**).

$$\frac{\omega_a}{\omega_p} = \frac{\omega_a^m}{\omega_p^m} \frac{1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}}{1 + B_k + B_q}$$

Quantity	$\begin{array}{c} \text{Correction} \\ [\text{ppb}] \end{array}$	Uncertainty [ppb]
$\overline{\omega_a^m}$ (statistical)	_	201
ω_a^m (systematic)	_	25
$\overline{C_e}$	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	_	11
m_{μ}/m_{e}	—	22
$g_e/2$	_	0
Total systematic	_	70
Total external parameters	_	25
Totals	622	215

