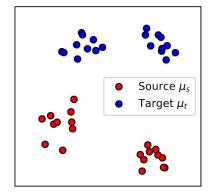
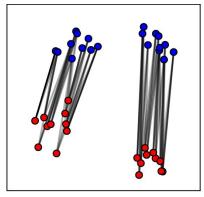

Optimal Transport for e/π^0 Particle Classification in LArTPC Neutrino Experiments

Chuyue "Michaelia" Fang University of California, Santa Barbara New Perspectives - 7/8/2024 FERMILAB-SLIDES-24-0157-V

LArTPC Neutrino Detectors and MicroBooNE


Operational Principle of MicroBooNE LArTPC

MicroBooNE Event Display of A Charged Current ν_μ Interaction

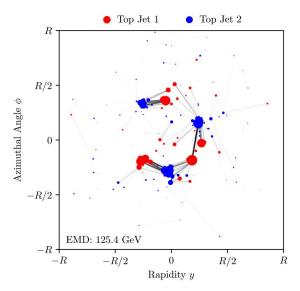

- π^0 is a crucial background to oscillation experiments and BSM searches
- both e and π^0 present as EM showers, making it a reconstruction challenge to separate them
- currently using MicroBooNE Public Datasets for samples input

What is Optimal Transport?

Distributions (Flamary 2019)

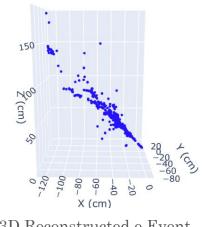
Transport plan visualized

- "the general problem of moving one distribution of probability mass to another as efficiently as possible"
- provides a transport plan and an optimal transport distance,
 which is used to compare two probability distributions


Why Optimal Transport?

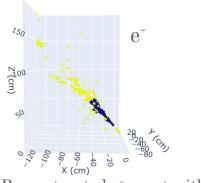
- advantages of optimal transport
 - o optimal transport performs well with sparse dataset
 - o more transparent in how it's achieving the results
 - can be used as pre-processing for further analysis (ex.kNN)
- optimal transport has different variants and metrics which each has their own benefits
 - currently using 2-Wasserstein distance

Optimal Transport in HEP

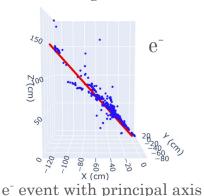

- optimal transport has been used for jet classification in LHC data by several groups, including N. Craig and J. Howard at UCSB who we're working with
- optimal transport outperforms traditional methods in jet classification; it's competitive with standard machine learning methods and it's also easy to interpret

Optimal Transport for Jets (Komiske 2019)

e/π^0 Events in LArTPC

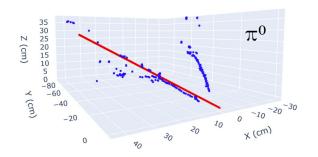


3D Reconstructed e Event


3D Reconstructed π^0 Event

- e produces one EM shower
- π^0 decays into two photons which produce two EM showers
- we aim to use OT for classification without directly reconstructing the EM showers separately

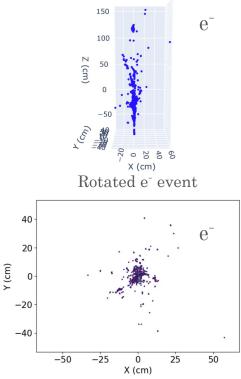
Identifying Principal Axis of a 3D Reconstructed Event



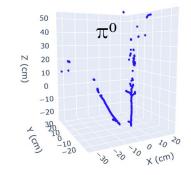
3D Reconstructed e⁻ event with identified largest cluster

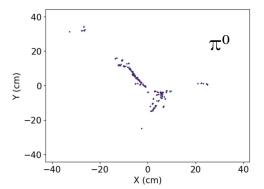
 $\begin{array}{c} 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ -20 \\ -30 \\ -10 \\ \end{array}$

3D Reconstructed π^0 event with identified largest cluster



 $\pi^{\scriptscriptstyle 0}$ event with principal axis


- proximity
 clustering finds
 largest cluster
- Principal
 Component
 Analysis (PCA) on
 largest cluster to
 identify principal
 axis of the event

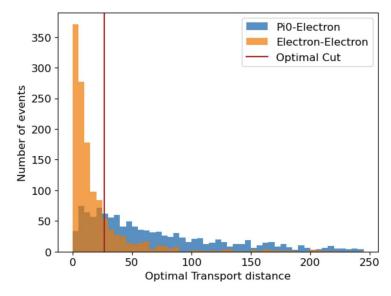

Taking Planar Projections of 3D Reconstructed Sample

Planar projection of e⁻ event

Rotated π^0 event

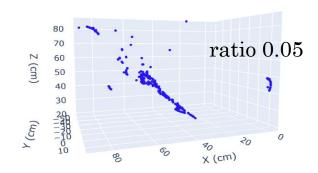
Planar projection of π^0 event

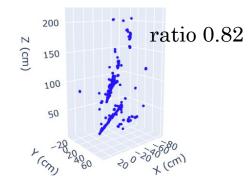
- rotate all the spacepoints so that principal axis aligns with Z-axis
- project all spacepoints onto XY-plane

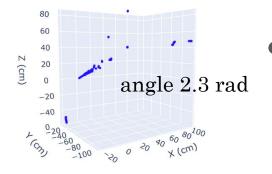

Optimal Transport Computation

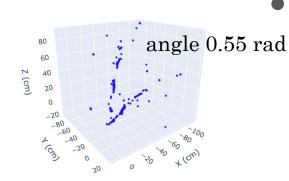
- e and π^0 samples are separated into 8 different energy bins
- optimal transport distances are computed between events in the same energy bin with equal numbers of e and π^0 events
 - planar projections of 3D reconstructed samples are used as input
- OT distances are used for classification
 - different machine learning methods could be used for classification with OT distances as input

Results - Performance of Optimal Transport


- using a cut on OT distances
 - o accuracy: 0.764
- using OT distances as input for machine learning methods
 - k-Nearest Neighbors (kNN)
 - accuracy: 0.786
 - Support Vector Machine (SVM)
 - accuracy: 0.809


Optimal Transport Distance for π^0 and e Events Compared to Electron Events for First Energy Bin

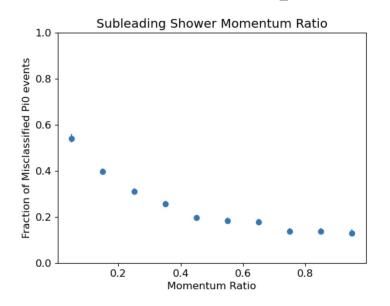

π^0 Kinematic Variables

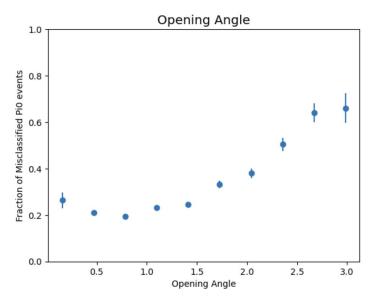

 π^0 event with high shower asymmetry

 π^0 event with low shower asymmetry

 π^0 event with large opening angle

 π^0 event with small opening angle


shower asymmetry


(psubleading: pprimary ratio)

opening angle between two showers

Performance Compared with Kinematic Variables

- accuracy increases with less shower asymmetry as expected
- low accuracy at high end for opening angle

Summary

- application of optimal transport for LArTPC neutrino experiments
 - have implemented optimal transport on MicroBooNE public datasets
 - overall able to separate π^0 from e using OT distances
 - finalizing first implementation of optimal transport for neutrino event classification
 - possible future implementation in SBN and DUNE analyses

Backup slide - p-Wasserstein distance

$$W_p(\mathcal{E}, \tilde{\mathcal{E}}) = \min_{g_{ij} \in \Gamma(\mathcal{E}, \tilde{\mathcal{E}})} \left(\sum_{ij} g_{ij} \|x_i - \tilde{x}_j\|^p \right)^{1/p}$$