# MiniBoonE in 10 Minutes

Nicholas Kamp for the MiniBooNE Collaboration

New Perspectives 2024 •

RI

TAS

ARVAP



# Overview

- Overview of the MiniBooNE experiment
- The electron-like excess
- Further MiniBooNE results



# Overview

- Overview of the MiniBooNE experiment
- The electron-like excess
- Further MiniBooNE results



# The MiniBooNE Experiment

- The MiniBooNE experiment uses a Cherenkov detector to measure the interactions of neutrinos produced in the Booster Neutrino Beam (BNB)
- Designed to look for muon-to-electron neutrino oscillations L/E ~ 1 km/GeV to test the oscillation interpretation of the LSND excess



### The Booster Neutrino Beam

- The Booster Neutrino Beam (BNB) is created by irradiating a beryllium target with 8 GeV protons
  - Neutrinos produced predominately in charged meson decay chains
- The MiniBooNE detector sits 541 m away from the BNB target



### The Booster Neutrino Beam

- The Booster Neutrino Beam (BNB) is created by irradiating a beryllium target with 8 GeV protons
  - Neutrinos produced predominately in charged meson decay chains
- The MiniBooNE detector sits 541 m away from the BNB target



# The MiniBooNE Detector

- 6.1m radius spherical mineral oil (CH<sub>2</sub>) detector (high n, low Cherenkov threshold)
- 1520 photo-multiplier tubes covering the inner surface of the spherical detector
- Remarkable stability in the detector response over the 17 year lifetime

**Michel Electron Energy** 



Mass Peak

#### events/MeV events/2 MeV 2007 data 6.46x10<sup>20</sup> POT events/MeV 2007 data 6.46x10<sup>20</sup> POT 2007 data 6.46x10<sup>20</sup> POT 8000 2017 data 6.38x10<sup>20</sup> POT 2017 data 6.38x10<sup>20</sup> POT 2017 data 6.38x10<sup>20</sup> POT 10 2019 data 5.9x10<sup>20</sup> POT 1000 2019 data 5.9x10<sup>20</sup> POT 2019 data 5.9x10<sup>20</sup> POT 6000 PRD 103, 052002 4000 500 2000 500 1000 120 140 100 160 20 40 60 180 $v_{\mu} E_{\nu}^{QE} [MeV]$ $\pi^0$ invariant mass [MeV/c<sup>2</sup>] E [MeV] 2017/2007 2019/2007 E (Me)

#### $u_{\mu}$ CCQE Muon Energy

N. Kamp

#### MiniBooNE in 10 Minutes; New Perspectives 2024

# The MiniBooNE Detector

**Electrons:** "fuzzy" rings from multiple scattering and bremsstrahlung radiation



Neutral Pions: two fuzzy rings from decay to two photons







#### MiniBooNE in 10 Minutes; New Perspectives 2024

# Overview

- Overview of the MiniBooNE experiment
- The electron-like excess
- Further MiniBooNE results



- With the complete dataset, the excess of electron-like events is:  $638.0 \pm 52.1$  (stat)  $\pm 122.2$  (sys) events ( $4.8\sigma$  significance)
- Excess is consistent across the lifetime of the detector



**Neutrino Mode** 

Events/MeV



Neutral Pion and dirt backgrounds constrained *in situ*; disfavored by radial/timing distributions of excess



Neutral Pion and dirt backgrounds constrained *in situ*; disfavored by radial/timing distributions of excess

**Delta decay background** would need be scaled by factor of ~3 to explain excess; disfavored by recent MicroBooNE results



Neutral Pion and dirt backgrounds constrained *in situ*; disfavored by radial/timing distributions of excess

**Delta decay background** would need be scaled by factor of ~3 to explain excess; disfavored by recent MicroBooNE results

Excess consisting of entirely true electron neutrino events disfavored by recent MicroBooNE results

# **Oscillation Interpretation**

Δm<sup>2</sup> (eV<sup>2</sup>)

10

- eV-scale sterile neutrino oscillation parameter space consistent with LSND allowed region
- Additional excess above best fit at lowest energies



- 68% CL

- 90% CL

- 95% CL

99% CL

— 3σ CL

- 4σ CL

# **Steriles and MicroBooNE**

- MiniBooNE has performed a combined fit to the 3+1 model considering the MicroBooNE  $\nu_{\rm e}$  analyses—allowed regions remain at the  $3\sigma$  C.L.
- MicroBooNE's own 3+1 analysis rules out a portion of MiniBooNE's allowed region at the 95% C.L.



# **Beyond Sterile Neutrinos**

• Tension in sterile neutrino global fits [1] has led the community to explore alternative models to explain the MiniBooNE excess



# **Beyond Sterile Neutrinos**

- Tension in sterile neutrino global fits [1] has led the community to explore alternative models to explain the MiniBooNE excess
- · Decay of O(keV) S
  - [13] Dentler, E
  - [14] de Gouvê
- New resonance m – [5] Asaadi, Ch
- Mixed O(1eV) ster
   [7] Vergani, Ka
- Decay of heavy st
  - [4] Gninenko,
  - [12] Alvarez-F
  - [15] Magill, Ple
  - [11] Fischer, H
- Decay of upscatte more complex high
  - [1] Bertuzzo,
  - [2] Abdullahi,
  - [3] Ballett, Pas
  - [10] Dutta, Gh
  - [6] Abdallah, C
- - [8] Chang, Ch
- A model-independ

   [9] Brdar, Fisch

# The MiniBooNE 4.8 $\sigma$ excess of electronlike events remains unexplained!

- BSM matter effects in sterile oscillations <u>Alves et al. arXiv:2201.00876</u>
- Charged meson decay to new physics <u>Dutta et al. arXiv 2110.11944</u>

1.0

0.5

[1] See 1803.10661 and 1906.00045

# Overview

- Overview of the MiniBooNE experiment
- The electron-like excess
- Further MiniBooNE results



# **Cross Sections**

- Many cross section measurements across different neutrino interaction channels over the 17-year run
- Muon neutrino CCQE doubledifferential cross section established importance of multi-nucleon effects in accelerator neutrino experiments







#### N. Kamp

#### MiniBooNE in 10 Minutes; New Perspectives 2024

# Conclusion

- MiniBooNE's 818-ton mineral oil Cherenkov detector detector has taken 17 years of data at Fermilab's booster neutrino beam
- MiniBooNE observes a  $4.8\sigma$  excess of electron-like events
  - Recent MicroBooNE results offer some insights into the nature of the excess, but it remains unexplained!
  - Community is exploring more exotic explanations
- Many other important MiniBooNE results, including cross section measurements and dark matter constraints

# Backup

### The Entire MiniBooNE Dataset



### Neutrino mode total: 18.75e20 POT Antineutrino mode total: 11.27e20 POT

207

MiniBooNE in 10 Minutes; New Perspectives 2024

#### Excess

# Electron Angle / Energy

- Significant portion of the excess in the low electron visible energy / scattering angle region of phase space
- In the most forward peaked region, the excess extends to higher visible energy





# **Timing Distribution**

- The excess is contained within the expected 8 ns window around the beam bunch timing structure
- Disfavors

   interpretations involving
   external neutrinos or
   beam-off events
- Note: timing information available for second run period only



# Radial Distribution

 Shape fits to the radial distribution disfavor explanations of the excess involving external events or neutral pions



| Hypothesis                                              | Multiplicative factor | $\chi^2/9ndf$ |                             |
|---------------------------------------------------------|-----------------------|---------------|-----------------------------|
| NC $\Delta \rightarrow N\gamma$ Background              | 3.18                  | 10.0          |                             |
| External Event Background                               | 5.98                  | 44.9          |                             |
| $\nu_e$ & $\bar{\nu}_e$ from $K^0_L$ Decay Background   | 7.85                  | 14.8          |                             |
| $ u_e \ \& \ ar{ u}_e$ from $K^{\pm}$ Decay Background  | 2.95                  | 16.3          | V <sup>e</sup> sca.         |
| $\nu_e$ & $\bar{\nu}_e$ from $\mu^\pm$ Decay Background | 1.88                  | 16.1          | Pes 7 Chehower              |
| Other $\nu_e$ & $\bar{\nu}_e$ Background                | 3.21                  | 12.5          | Shows                       |
| NC $\pi^0$ Background                                   | 1.75                  | 17.2          | $\pi^0$                     |
| Best Fit Oscillations                                   | 1.24                  | 8.4           | Example of a $\pi^0$ mis-ID |

- With the complete dataset, the excess of electron-like events is:  $638.0 \pm 52.1$  (stat)  $\pm 122.2$  (sys) events ( $4.8\sigma$  significance)
- Excess is consistent across the lifetime of the detector

