Overview of SpinQuest Polarized Target System

New Perspectives 2024

(Fermilab-Slides-24-0154) July 9^{th} , 2024

Vaniya Ansari Mississippi State University (For the SpinQuest Collaboration)

Outline

- SpinQuest: Motivation and Goals
- SpinQuest: Polarized Target System
 - O Cryogenic System
 - Superconducting Magnet
 - Evaporation Refrigerator
 - Ø Dynamic Nuclear Polarization
 - Target Materials
 - Microwave Setup
 - Nuclear Magnetic Resonances Setup
- Beam Commissioning Studies
- Summary and Outlook

- SpinQuest/E1039 experiment uses a 120 GeV proton beam and transversely polarized targets;
 - Ammonia (NH₃) as a proton target
 - Deuterated ammonia (ND₃) as a neutron target
- SpinQuest aims to help resolving the proton spin puzzle by measuring the Sivers function of sea quarks in Drell-Yan scattering:
 - A non-vanishing Sivers function is an evidence of sea quark's Orbital Angular Momentum
 - OAM of sea quarks could contribute up to $\sim~50\%$ of the proton spin
- SpinQuest will also measure the Transverse Single Spin Asymmetry in J/ψ production to access the gluons Sivers function

SpinQuest: Experimental Setup

Vaniya Ansari

- 5 T superconducting magnet
- 140 GHz microwave source
- Carbon fiber insert with 3 cups
- 3 NMR coils per cup
- Exploit Dynamic Nuclear Polarization technique with maximum polarization of about 80% (35%) for NH₃ (ND₃)
- ⁴He evaporation refrigerator consisting of 3 W of cooling power to keep the target at 1.1 K with 17,000 m³/h pumps

Cryogenic System

- The SpinQuest cryogenic system has been built from scratch
- The helium liquefaction system has two Dewars each of about 250 L capacity

- The magnet consists of NbTi coils impregnated in epoxy to prevent them from moving
- The superconducting magnet coils provide a 5 T uniform transverse magnetic field with $\frac{dB}{B} < 10^{-4}$ over 8 cm

- Critical components of the high cooling system are:
 - High power root pumps with a capacity of $17,000 m^3/h$
 - Liquid ⁴He supply
 - Heat exchanger to lower ⁴He temperature to 1 K
 - Thermal shielding
- Evaporated ⁴He is pumped out by high power root pumps to keep the temperature at 1 K and pressure at 0.12 Torr

- Degree of polarization at thermal equilibrium: $P_{TE}^{NH_3} = \tanh \frac{\mu B}{kT}$
- Spin polarization is transferred from electrons to nuclei via Radio Frequency irradiation and an external magnetic field
- At temperature of 1 K and 5 T magnetic field, the electron polarization is about 98% compared to 0.3% for protons

Target Materials

- A good DNP target material candidate is characterized by the maximum achievable polarization, dilution factor, and resistance to the radiation damage
- 8 cm long solid NH₃/ND₃ target material doped with paramagnetic free radical get irradiated at National Institute of Standard and Technology then shipped to Fermilab
- The polarization decays over time due to the radiation damage but it can be restored by the annealing process

Material	NH ₃	ND_3
Dilution Factor	0.176	0.3
Packing Fraction	0.60	0.60
Average Polarization	80%	32%

Microwave Setup

- 140 GHz RF signal is generated by Extended Interaction Oscillator
- The optimal frequency can fluctuate within limits as the spin direction is flipped and the target accumulate radiation damage from the beam
- The EIO is coupled to the target cups via a wave guide

See Vibodha Bandara's talk for more details

Vaniya Ansari

Nuclear Magnetic Resonances Setup

- Polarization is measured using Q-meter based NMR
- A series of conductive (C) Q-meters are connected to NMR coils of inductance (L) and resistance (R)
- The RF field is produced by three NMR coils embedded inside each target cup
- The LCR circuit is tuned to the Larmor frequency of the target material
- Three different NMR measurement techniques are used for systematic checks

Beam Commissioning Studies

- Performed a beam scan with horizontal and vertical tungsten plates
- Deployed G10 sheets on the beamline window and target cups for beam-target centering

NH₃ Production Data-taking

- Production data were collected for both positive (spin up) and negative (spin down) polarizations with
 - average protons/spill of $\sim 1.3 \times 10^{12}$
 - total protons on target of $\sim 2.2 \times 10^{15}$, where $\sim 7.2 \times 10^{14}$ (1.5 $\times 10^{15}$) achieved with positive (negative) polarization
 - average positive polarization $\sim 87.7\%$
 - average negative polarization \sim -70.5%

See the talk by Mohammad Farooq for the heat load study on polarization

Vaniya Ansari

- The experiment has been able to run with a maximum beam intensity of 3×10^{12} protons/spill
- So far, the collaboration was able to achieve 90% of the beam commissioning goals and to collect two weeks of production data
- Currently, studies are dedicated to fulfil the remained 10% of the beam commissioning goals before the accelerator shutdown
 - Perform the quench commissioning study to determine the highest possible beam intensity the superconducting magnet can handle without a quench
 - Determine the highest possible beam intensity the system can tolerate under the maximum liquid ⁴He pumping
- In the 2024 fall run, the experiment plans to also use the transversely polarized ND₃ target

Thank You!

This work is supported by U.S. DOE # : DE-FG02-96ER40950 and DE-FG02-07ER41528

- The experiment has been able to run with a maximum beam intensity of 3×10^{12} protons/spill
- So far, the collaboration was able to achieve 90% of the beam commissioning goals and to collect two weeks of production data
- Currently, studies are dedicated to fulfil the remained 10% of the beam commissioning goals before the accelerator shutdown
 - Perform the quench commissioning study to determine the highest possible beam intensity the superconducting magnet can handle without a quench
 - Determine the highest possible beam intensity the system can tolerate under the maximum liquid ⁴He pumping
- In the 2024 fall run, the experiment plans to also use the transversely polarized ND₃ target

Thank You!

This work is supported by U.S. DOE # : DE-FG02-96ER40950 and DE-FG02-07ER41528