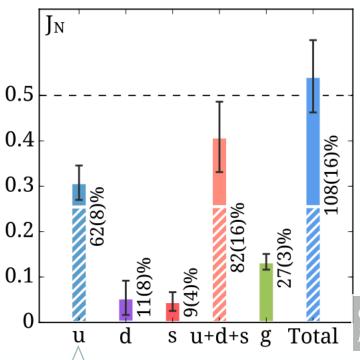
Extracting Sivers Asymmetry in Drell-Yan at SpinQuest Experiment using a likelihood method

Harsha Sirilal Kalu Arachchige, S. Pate, Dinupa Nawarathne, V. Papavassiliou

Outline

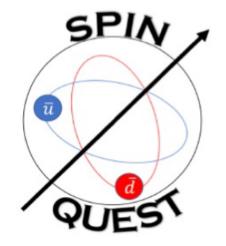
- The Proton
- SpinQuest
 - Physics
 - Experimental Setup
- Asymmetry Extraction (Simulation Study)
 - Simulating the dataset
 - Likelihood Estimate
 - Un-binned Unfolding
 - Results


The Proton

Orbital Angular Momentum

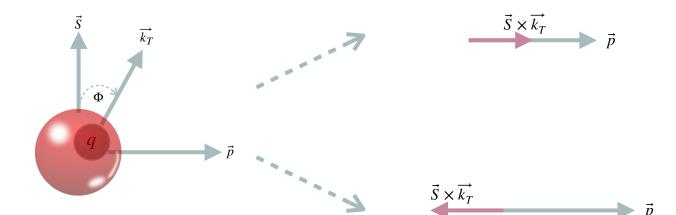
$$rac{1}{2} = rac{1}{2}\Delta\Sigma + \Delta G + L_g + L_q + L_{ar{q}}$$

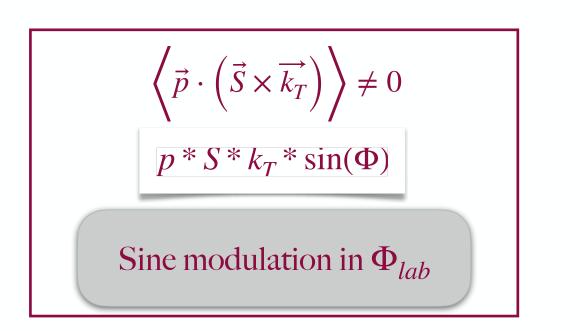
Intrinsic Spin

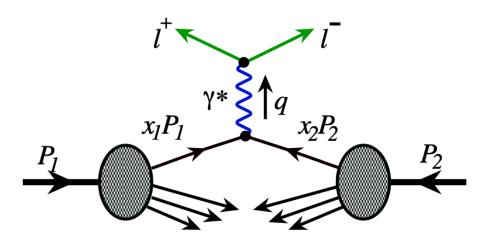

Sea Quarks

=				
	$rac{1}{2}\Delta\Sigma$	J	L	$\langle x \rangle$
u	0.415(13)(2)	0.308(30)(24)	-0.107(32)(24)	0.453(57)(48)
d	-0.193(8)(3)	0.054(29)(24)	0.247(30)(24)	0.259(57)(47)
S	-0.021(5)(1)	0.046(21)(0)	0.067(21)(1)	0.092(41)(0)
g	•••	0.133(11)(14)		0.267(22)(27)
To	t. 0.201(17)(5)	0.541(62)(49)	0.207(64)(45)	1.07(12)(10)

C. Alexandrou et al, PRL 119, 142002 (2017)


 $u + \bar{u}$


SpinQuest


Sivers Function ($f_{1T}^{\perp}(x, k_T)$)

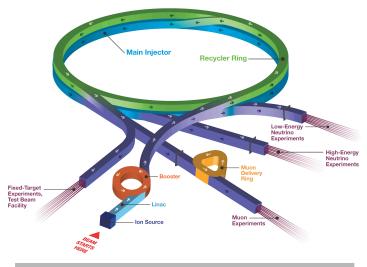
- Describe a correlation between the nucleon Spin (\vec{S}) and the Parton's transverse momentum $(\vec{k_T})$.
- Average correlation over many polarized nucleons is non-zero.

Drell-Yan Process

Jen-Chieh Peng and Jian-Wei Qiu The Universe 4 (2016) 3, 34-44

Beam is unpolarized $->f_{1T}^{\perp}(x,k_T)$ of the beam will wash out

• Quark from the beam will struck on an antiquark in the polarized target producing a virtual photon which will decay into a lepton pair.


$$\frac{d\sigma^{LO}}{d\Omega} = \frac{\alpha_{em}^2}{Fq} F_v^1 \left\{ 1 + \cos^2 \theta + \sin^2 \theta \cos 2\phi_{CS} A_U^{\cos 2\phi_{CS}} \right\}$$

$$+ S_T \left[\left(1 + \cos^2 \theta \right) \sin \phi_s A_T^{\sin \phi_s} + \sin^2 \theta \left(\sin(2\phi_{CS} + \phi_s) A_T^{\sin(2\phi_{CS} + \phi_s)} \right) + \sin(2\phi_{CS} - \phi_s) A_T^{\sin(2\phi_{CS} - \phi_s)} \right]$$

$$A_T^{\sin\phi_s} \propto f_1^q \otimes f_{1T}^{q\perp}$$

Target is polarized and we are looking for a non-zero sinusoidal modulation in the azimuthal distribution of leptons (di-muons) in the lab frame

Fermilab Accelerator Complex

https://www.fnal.gov/pub/science/particle accelerators/accelerator-complex.html

Station 4 Hodoscope array Prop tubes Stations 1, 2 & 3 Hodoscope array Drift chamber KTeV Solid iron Focusing magnet Magnet Hadron absorber Beam dumper Hadron absorber Polarized solid ammonia target

• 4×10^{12} protons per spill (4 seconds)

• Fixed Targets : NH_3/ND_3

• Polarization: Transverse to the beam

Asymmetry Extraction Using a Likelihood Technique(Simulation Study)

Likelihood of an event in E1039

• Azimuthal distribution of di-muons in lab frame,

$$\frac{d\sigma}{d\Omega} \sim 1 + P_i * A_N * \sin(\Phi_{pol,i} - \Phi_i)$$

• Therefore the likelihood of a measured event i,

$$L_i(A_N) \propto (1 + P_i * A_N * \sin(\phi_s - \phi_i))$$

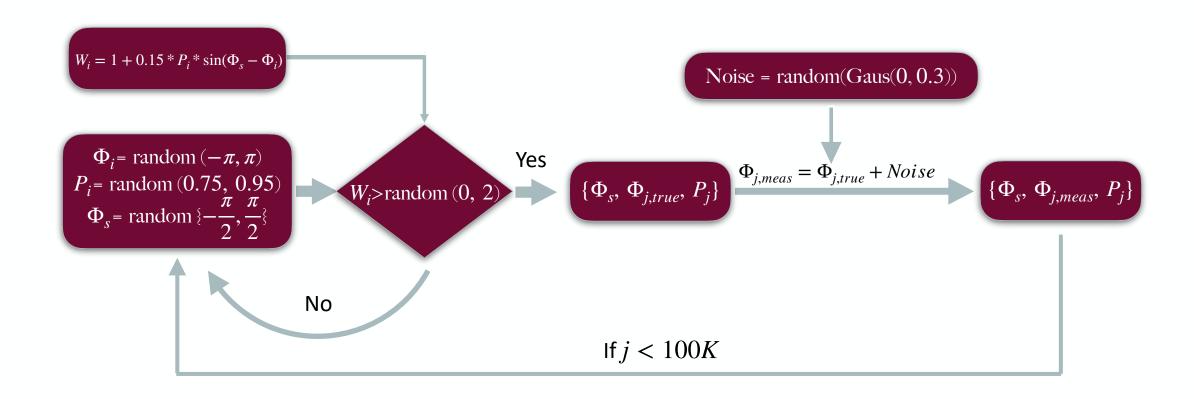
• ... Negative log likelihood of the data set,

$$\ln L(A_N) = -\sum_i \ln \left(1 + P_i * A_N * \sin(\phi_s - \phi_i)\right)$$
 Find A_N that minimize the $L(A_N)$

GOAL:

• In SpinQuest:

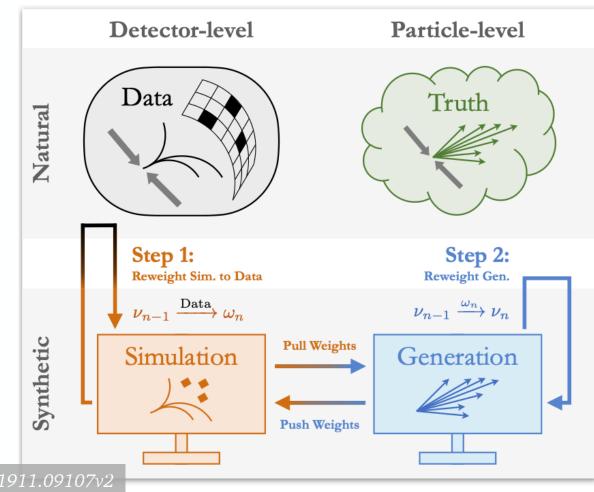
•
$$P_i, A_N \in [0,1]$$
, $\sin(\Phi_s - \Phi_i) \in [-1,1]$ and $A_N < < 1$.


• ... using a power series expansion of $\ln L(A_N)$,

$$A_N = \frac{\sum_i \sin(\phi_s - \phi_i)}{\sum_i P_i^2 * \sin^2(\phi_s - \phi_i)}$$

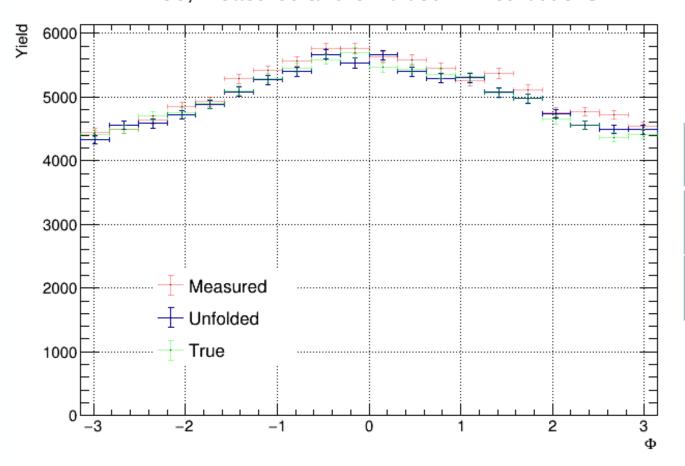
• Error will be:

$$\sigma_{A_N} = \sqrt{\sigma^2(A_N)} = \frac{1}{\sqrt{\frac{d^2L(A_N)}{dA_N^2}}} = \pm \sqrt{\frac{1}{\sum_i P_i^2 * \sin^2(\phi_s - \phi_i)}}$$


Simulating SpinQuest's dataset ($\{\Phi_S, \Phi_i, P_i\}$)

Unfolding

- An un-binned unfolding technique: Omnifold
- Un-binned version of Bayesian unfolding.
- Its job is to remove the smearing introduced by the detector.


Refer to the talk by Dinupa Nawarathne in SeaQuest session

Results

True, Measured and Unfolded Φ Distributions

Injected $A_N = 0.15$

	A_N	$\sigma_{\!A_N}$
Measured	0.1768	0.0055
Unfolded	0.1463	0.0055

Conclusion

- SpinQuest is focused on extracting the \bar{u} and \bar{d} contributions to the Sivers Asymmetry in Drell-Yan.
- Fixed targets used are polarized with DNP technique.
- Temporal changes in the magnitude of polarization suggest to use an un-binned analysis framework.
- Expected dataset is $\sim 200\,000\,\mathrm{DY}$ events.
- Likelihood estimation along with Omnifold returned the injected value at the $1-\sigma$ level.

Thank You!!!

