Oscura in 10 Minutes

On behalf of the Oscura Collaboration Edgar Marrufo

New Perspectives 2024

Dark Matter Evidence

Evidence for the existence of dark matter from Astronomy/Cosmology

Astrophysical Probes Rotation curves, cluster collisions, gravitational lensing

Cosmological Probes

CMB anisotropies Structure formation

DM direct detection with CCDs

Sub-GeV DM needs other detection channels

🛟 Fermilab

Skipper-CCDs for direct DM search

Skipper CCD qualities for direct detection:

- Energy threshold of Si bandgap(~1.1 eV)
- Low dark current (10⁻⁴e-/pix/day)
- Sub-electron (~0.1e-) readout noise

Low Threshold enables low-mass searches:

- Electron scattering of 1-1000 MeV DM
- Absorption of 1-1000 eV DM

Skipper-CCDs for direct DM search

World best limits for sub-GeV DM candidates with this technology ------> Ongoing program

Experiment	Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commissioning
SENSEI @ MINOS	~0.002	1	3400	1.6 x 10 ⁻⁴	late-2019
DAMIC @ SNOLAB	~0.02	2	~10 (exp*)	~3 x 10 ⁻⁴ (exp*)	late-2021
DAMIC-M LBC	~0.02	2	10	3 x 10 ⁻³	late-2021
SENSEI-100	~0.1	50	10 (goal)		mid-2022
DAMIC-M	~1	200	0.1 (goal)		~2023
OSCURA	~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028

* expected from DAMIC with standard CCDs [PRL 123, 181802/PRL 125, 241803]

Oscura builds on existing efforts

The challenges are to increase mass (from 10s to 10,000s CCDs) and to reduce the backgrounds (2 orders of magnitude)

Major R&D ←

Oscura: 10-kg skipper-CCD experiment

Multi-Chip Module (16 skipper-CCDs)

Super Module

Detector payload in 6 columnar slices (96 SMs)

[arXiv:2202.10518] LN₂ pressure vessel @ 450 psi

3 m SNALAB

Oscura: Sensors performance

	No events	No events w	/ith		
Parameter	with >1e-	3e- or more		Prototype	Units
Dark current	1×10^{-6}	1.6×10^{-4}	\checkmark	3×10^{-2}	<i>e</i> ⁻ /pix/day
Readout time for full array	< 2	< 5	\checkmark	3.4 (4.2)	hours
Pixel readout rate	> 188	> 76	\checkmark	111 (89)	pix/s
Readout noise	< 0.16	< 0.20	\checkmark	0.19 (0.20)	e^{-} RMS
Spurious charge	< 10 ⁻¹⁰	$< 10^{-8}$		7.2×10^{-7}	e ⁻ /pix/transfer
Trap density with $\tau > 5.3$ ms	< 0.12		\checkmark	< 0.015	traps/pix
Charge transfer inefficiency	< 10 ⁻⁵		\checkmark	$< 5 \times 10^{-5}$	1/transfer
VIS/NIR light blocking	> 90%		\checkmark	95%	

- Sensors reach sub-electron noise and meet almost all constraints to reach desired instrumental background
- Spurious charge is under study and new approaches are being implemented
- Installed underground setup at MINOS (MOSKITA) to measure the ultimate DC

107 m

NuMI building

Oscura: Massive testing setup with 10 MCMs (160 sensors)

[JINST 18 P01040]

- Copy of SENSEI-100 vessel with 10 prototype ceramic MCMs and the discrete readout electronics
- Largest ever built instrument with skipper-CCDs controlled by 1 LTA → Demonstrates electronics solution

~90% of the sensors working without a preselection! This is a BIG deal!*

*LSST, the largest "astronomical camera" has 189 CCDs!

Setup is being used to develop analysis software and could be used for early science

- A A A A A A A A A A A A A A A A A A A
NATE AND

Oscura: Projected sensitivities for 30 kg-year

With the current sensors performance, we have zero background events with 4e⁻ or more (4e curve)

DM-electron scattering mediated by a heavy (left) or light (right) mediator

‡Fermilab

Oscura: Timeline and goals per period

Achieved

* Technically driven Oscura timeline

Take-home messages

- Oscura is the next step in skipper-CCD DM searches (10 kg)
- It will provide unprecedented sensitivity to sub-GeV DM interacting with electrons
- R&D work has been successfully completed and main risks have been addressed
- Oscura is moving into design phase, with plan to begin construction in FY25 and operations at SNOLAB in FY29
- With a partial load, Oscura can do early science producing very competitive results

Stay tuned!

