Astronomical Spectroscopy with Skipper CCDs: First Results from a Skipper CCD Focal Plane Prototype at SIFS

🛟 Fermilab

CHICAGO

Edgar Marrufo

New Perspectives 2024 09 July 2024

Cosmological Surveys

Skipper CCDs

Charge-Coupled Devices (CCDs)

3-phase

CCDs: Metal-Oxide-Semiconductor capacitors.

• Radiation interacting in the Si substrate (photoelectric effect) produces electron-hole pairs

5

Astronomy-optimized Skipper CCDs

Skipper CCD Focal Plane for SIFS

Skipper CCDs: Astronomy-Optimized

Skipper CCDs need to be optimized for large full-well capacities and low backgrounds

Skipper CCDs: Observation Optimization (Regions of Interest)

arXiv:2012.10414

Results

Skipper CCDs: First On-Sky Demonstration (Photon-Counting)

Region of interest N_{samp} is optimized to minimize backgrounds and demonstrate S/N improvements for SIFS.

10

Extra Slides

Planned Science

ALPs or other eV-scale DM may decay into monoenergetic photons, producing a spectral line.

For two-photon decays, each photon has observed wavelength λ = 2480 Å * (10 eV) * (1+z).

Moderate-redshift (z ~ 1-2) galaxy clusters have several advantages for ALP searches:

- Large DM masses constrained by SZ observations (e.g., ACT or SPT)
- Increases ALP mass reach for a given wavelength bandpass by a factor (1+z).

Ultra-faint-Dwarf Galaxy Candidate Member Star

