The Search for Dark Photons at the Short-Baseline Near Detector

Rohan Rajagopalan on behalf of the SBND Collaboration

In collaboration with Bhaskar Dutta, Aparajitha Karthikeyan, And Doojin Kim

rsrajago@syr.edu

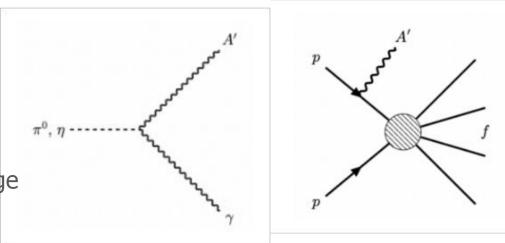
Overview

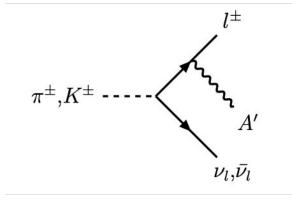
- Introduction of DP Model
 - Theoretical Motivations/Foundations
 - Expected Sensitivity at SBND
- Event Selection Development
 - Truth Based Studies
 - Initial Efficiency Estimates
- Timing Studies
 - Motivation for Timing selection cut
 - Expected Bunch Structure
- Next Steps & Conclusions

Fermilab

Short Baseline Neutrino Detector

- 112 ton Liquid Argon TPC (LArTPC) sitting at 110 meters from target^[1]
- SBND is performing physics analyses in 3 general categories:
 - Neutrino Oscillations
 - Cross section Measurements
 - BSM Searches
- Proximity to the target provides sensitivity to a plethora of BSM models
 - Explanations for low energy excess observed at MiniBooNE

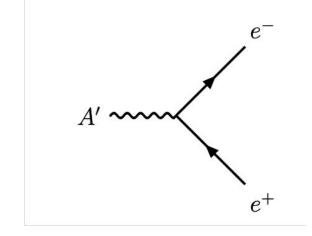


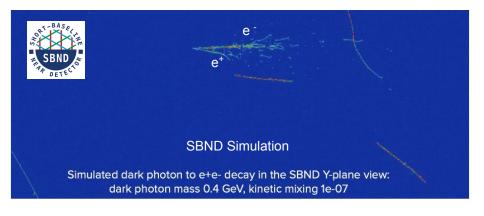

Dark Photon Model

- Dark Photons (DP) are hypothetical gauge bosons proposed to be force carriers for the dark sector, coupling to SM photons^[1].
- Our DP Model will cover a mass range consistent with the BNB energy/flux expected at SBND

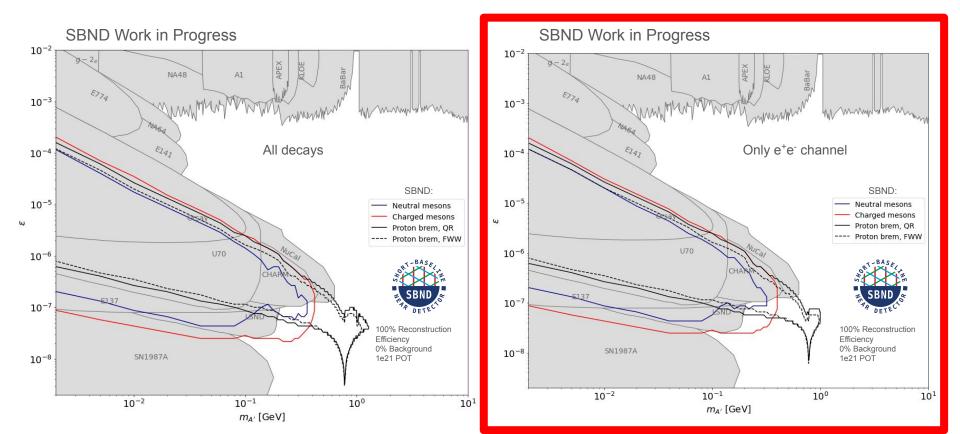
Sources:

- Charged mesons 3 body decay [2][3][4]
- Neutral mesons 2 body decay^[5]
- Protons Bremsstrahlung
 - Fermi-Weizsacker Williams^[6]
 - Quasi-real Initial state radiation^[7]

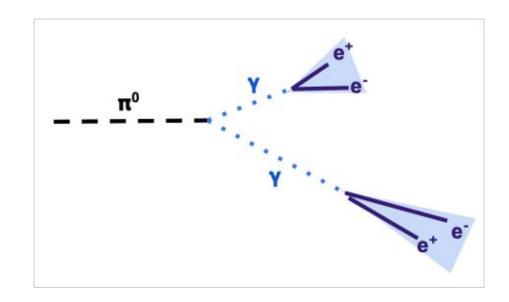




[1] arxiv.org/abs/2005.01515 [2] arxiv.org/abs/2110.11944 [3] arxiv.org/abs/1206.3587 [4] arxiv.org/abs/2308.01491 [5] arxiv.org/abs/1801.04847 [6] arxiv.org/abs/1311.3870 [7] arxiv.org/abs/2108.05900


Dark Photon Signal Topology

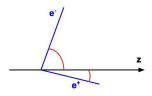
- We expect Dark Photons to kinetically mix with Standard Model Photons (ε) and then promptly decay
- More channels shall be investigated as this analysis develops.
 - For now, we are focussing on the e^+e^- channel.
- The high performance of LArTPC technology when reconstructing electron signals (and differentiating from photons) is another attraction to performing this analysis on SBND^[1]



SBND Dark Photon Sensitivity

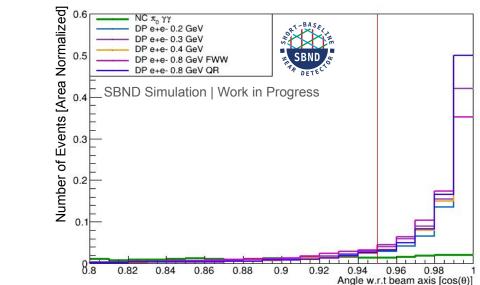
Neutrino-Induced NC π_0 Backgrounds

- We expect the first order largest background to arise from Neutral Current (NC) π⁰ events
- For 1e21 POT, we expect ~280k background events
- Can characterize NC π^0 events by particles produced at their primary vertex
- Can further observe particles produced in the neutrino interaction for NC π^0 events



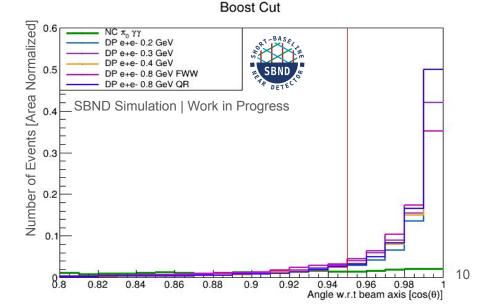
Current Event Selection

- Based on truth level studies, we have developed a preliminary event selection
- Main assumption taken:
 - \circ We have 100% cosmic rejection efficiency
- Our next step will be to move into reconstruction and expand our selection
- **Efficiency** : Signal events remaining after all cuts / Generated Signal events before all cuts
- **Purity**: # Signal events / (# Selected Signal events + # Selected Background events)
- **Signal/Background:** Event vertices within the FV, no detection thresholds


Event Selection Chain

9

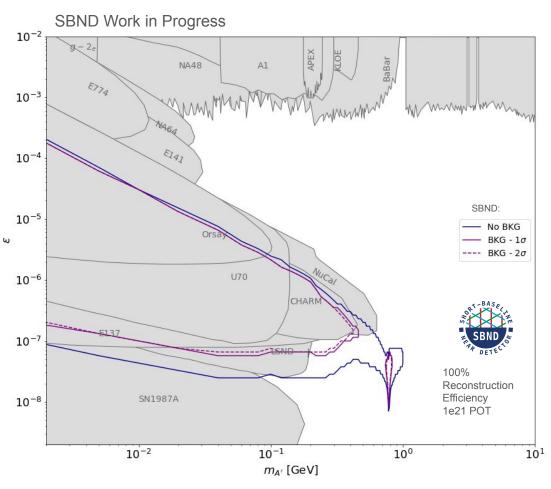
- **Proton Cut**: We require that no protons > 15 MeV KE to be at the primary vertex
- **Charged Pion Cut**: We require that no charged pions > 10 MeV KE to be at the primary vertex
- **Boost Cut**: We require the angle with respect to the beam axis $[\cos(\theta)] \ge 0.95$
 - Based on theoretical predictions, the e^{-}/e^{+} pair should be more forward going than NC π^{0} photons.


	NC π^0 Background Rejection Efficiency
Proton Cut	73.3%
n± Cut	79.1%
Boost Cut	97.5%

Boost Cut

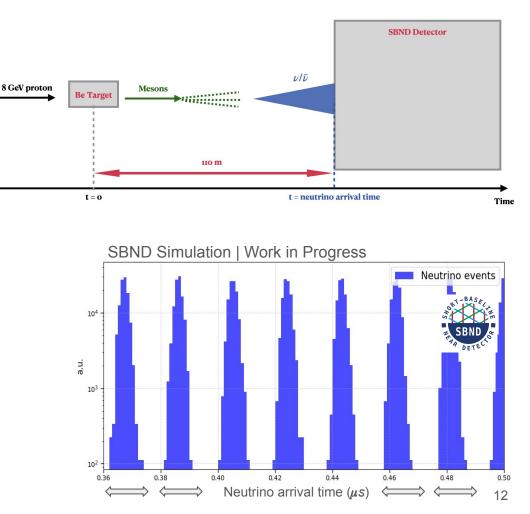
Event Selection Chain

- e z
- **Proton Cut**: We require that no protons > 15 MeV KE to be at the primary vertex
- **Charged Pion Cut**: We require that no charged pions > 10 MeV KE to be at the primary vertex
- **Boost Cut**: We require the angle with respect to the beam axis $[\cos(\theta)] \ge 0.95$
 - Based on theoretical predictions, the e^{-}/e^{+} pair should be more forward going than NC π^{0} photons.
- Our initial efficiency results have yielded a background rejection efficiency of ~97.5%
- Our signal selection efficiencies remain circa 70-80%
- Signal purities remain low circa ~4%
 - As we fold in other selection cuts (e^{-}/γ) separation, timing, etc) we expect this to improve significantly

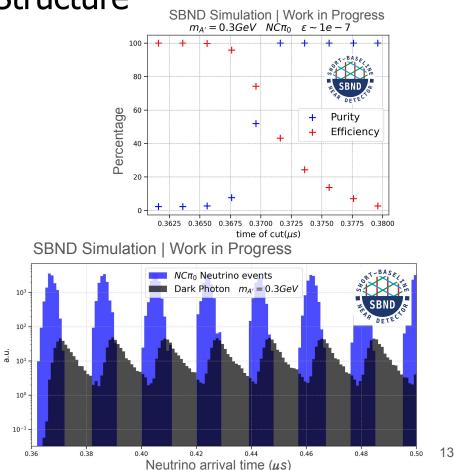


Sensitivity after cuts

Exclusion limits:

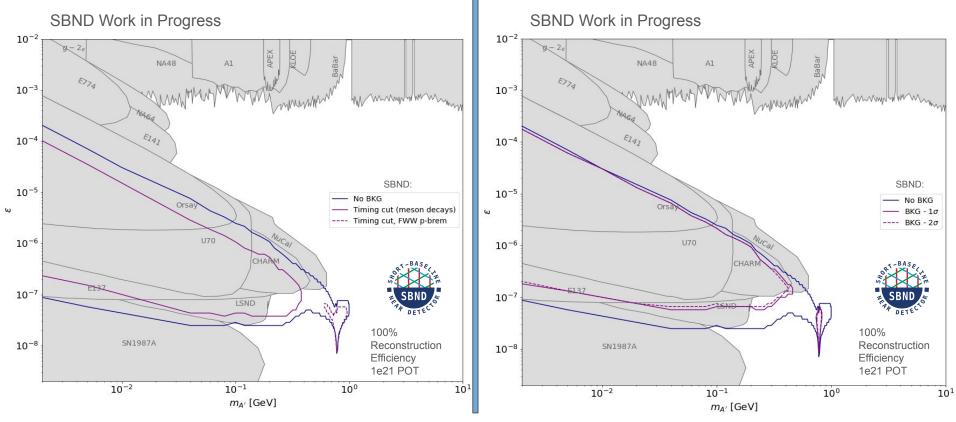

- Most conservative estimate only electrons.
- Looking for sensitivity with timing cuts would give better estimates as background rejection = 100%

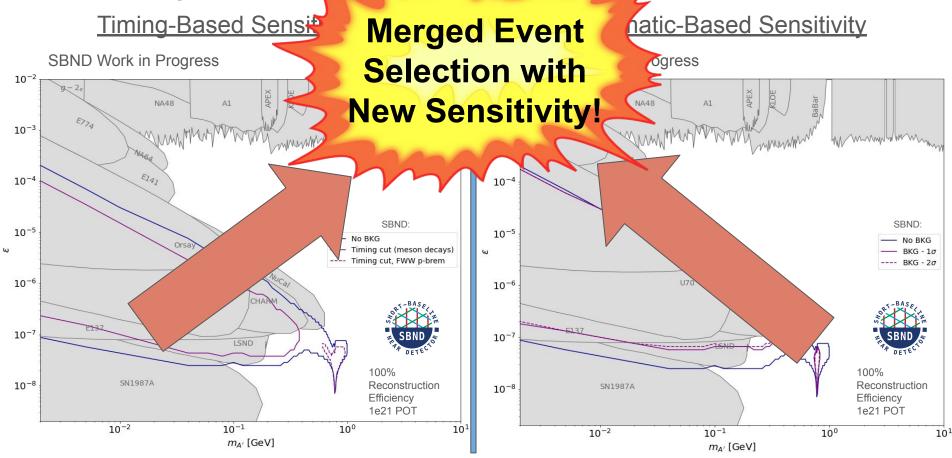
$$\Delta\chi^2 = \sum_i \frac{\text{signal}_i^2}{\text{bkg}_i}$$
$$\Delta\chi^2 > 2.3(4.61) \text{ for } 1\sigma(2\sigma) \text{ C.L}$$


Timing Studies

- Another important avenue for this analysis is investigating the expected decay time of Dark Photons at the detector, and how it lies within the overarching neutrino bunch structure.
- Thanks to work within the collaboration, we have made significant progress in understanding, at the truth level, how the Dark Photon behaves.

Dark Photon/Neutrino Bunch Structure


- This selection is carried out independent of the main event selection
 - To be folded into the main selection at a later date
- By taking the decay time of the Dark Photon within the detector, and overlaying this with the expected neutrino bunch structure (from collected BNB data), we can get a preliminary dark photon bunch structure


Summary of Sensitivity Estimates

Timing-Based Sensitivity

Kinematic-Based Sensitivity

Summary of Sensitivity inat

Next Steps & Conclusions

- Our team has begun to move into reconstruction
 - \circ Using a track/shower identification schema is first on our list
- With new sensitivity estimates, and samples provided by Texas A&M, our second task will be to incorporate our timing studies into the event selection
 Tight/loose cuts depending on location within the neutrino spill
- SBND has significant potential to set new limits for the Dark Photon mass.
- Moving into the future, with an expanded event selection, developed reconstruction, and investigation of all DP channels, we hope to cover a significant amount of parameter space.
- Questions?