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Strong Gravitational Lensing

2

Credit: ESA



Cosmology from Static Strong Lenses
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Cosmology from Static Strong Lenses
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D = f(z, H0, Ωm, w)
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Cosmology from Static Strong Lenses
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• Combining the mass measurement within Einstein radius   from lensing and 
stellar velocity measurements , the cosmology can be constrained through 
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Amante et al. 2020

Constraints from 204 strong lens 
observations using MCMC
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• Likelihood is intractable

Challenges for Cosmology Inference 
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Intractable Likelihood Simulation Based Inference



• Likelihood is intractable 

•  strong lenses to be discovered from surveys with 
telescopes such as Rubin Observatory, Euclid, and Roman 
Space Telescope

• Traditional MCMC methods for inference are computationally 
prohibitive 

𝒪(105)
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• NRE is a classifier neural network to differentiate between the 
lens image-parameter pairs

•   with class label y = 1

•  with class label y = 0

(x, w) ∼ p(x, w)

(x, w) ∼ p(x)p(w)

SBI : Neural Ratio Estimation (NRE)
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• The network learns the likelihood-to-evidence ratio
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r(x |w) =
p(x, w)

p(x)p(w)
=

p(x |w)
p(x)

• The network learns the likelihood-to-evidence ratio

• The joint likelihood-to-evidence ratio from a population of 
strong lens observations :{x}

r({x} |w) = Πi r(xi |w)



Posterior Inference of w
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• Using the trained NRE model for posterior inference of  
from a population of strong lens images

• Method 1 : MCMC sampling from  

• Method 2 : Analytical calculation

w

r({x} |w) p(w)

p(w |{x}) =
p(w) ∏i r(xi |w)

∫ dw′ p(w′ ) ∏i r(xi |w′ )



Neural Ratio Estimation workflow
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ν ∼ p(ν)
w ∼ p(w) x ∼ p(x |w, ν) {x0}

Prior distribution Simulator Observations

Neural Ratio Estimation
Evaluate model on the  

observed images Posterior

p(w |{x0})



• We simulate galaxy-galaxy 
strong lenses using 
Deeplenstronomy

• DES survey conditions with g-
band images

• Image size : 32 x 32 pixels

• Prior: 

• Training data: 640k images

• Validation data: 160k images

• Test data: 2k images

•

• Test data: 3k images each

w ∼ 𝒰(−2.0, − 0.34)

w = − 1.2, − 1.0, − 0.8

Dataset and Experimental Setup
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Sample set of 
images from 
training data 

Fixing 
zl, zs, σv, Ωm

Posterior 
estimated using 
NRE on test data



• Robustness: Train the model with three different seed 
initializations

• Classifier Performance: The Area under the Receiver 
Operating Curve (AUC) ~ 0.92

• Model Calibration: The posterior coverage plot shows 
that the model is well calibrated

Results: Model Performance
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The model can correctly predict  within  for images which 
have high signal-to-noise ratio

w 1σ
Results: Model Performance
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The posterior is more constrained as the number of 
observations in the population increase

Results: Population-level  Inferencew

19



Summary and Conclusion
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• We implemented SBI with NRE for the first time for 
population-level posterior inference of dark energy 
equation-of-state parameter from strong lens images. 

• Robust and well calibrated model. Provides constraints on 
 within .

• The posterior is more constrained with an increasing 
number of observations in the inference.

• This analysis is crucial for analyzing the thousands of 
lenses from future surveys.

w 1σ
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Cosmology from Static Strong Lenses
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• Dark energy equation-of-state parameter  and Dark Matter density  

constrain through distance ratio  from Einstein radius  and stellar 

velocity dispersion 
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h2(z, Ωm, w) = Ωm(1 + z)3 + (1 − Ωm)(1 + z)3(1+w)

Constraints from 204 strong lens 
observations using MCMC



Dataset and Experimental Setup
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Correlation between Einstein 
Radius  and . 
The variation in  is larger at 
high-

θE w
θE

w

Sample set of 
images from 
training data



• We run the model training with 
three different seed 
initializations to check 
robustness

• The Area under the Receiver 
Operating Curve (AUC) ~ 0.92

• Model can differentiate 
between the two classes 

 and p(x, w) p(x)p(w)

Results: Model Performance
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• The posterior coverage plot shows that the model is well 
calibrated

Results: Model Performance
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Results
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Posterior obtained from single observation using NRE



Results: Population-level  Inferencew
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The posterior inference  from the joint population analysis of 500, 1000, 2000, and 
3000 strong lens images using MCMC (Top) and Analytical method (Bottom)

p(w |{x})

• The posterior is more constrained as the number of 
observations in the population increase


