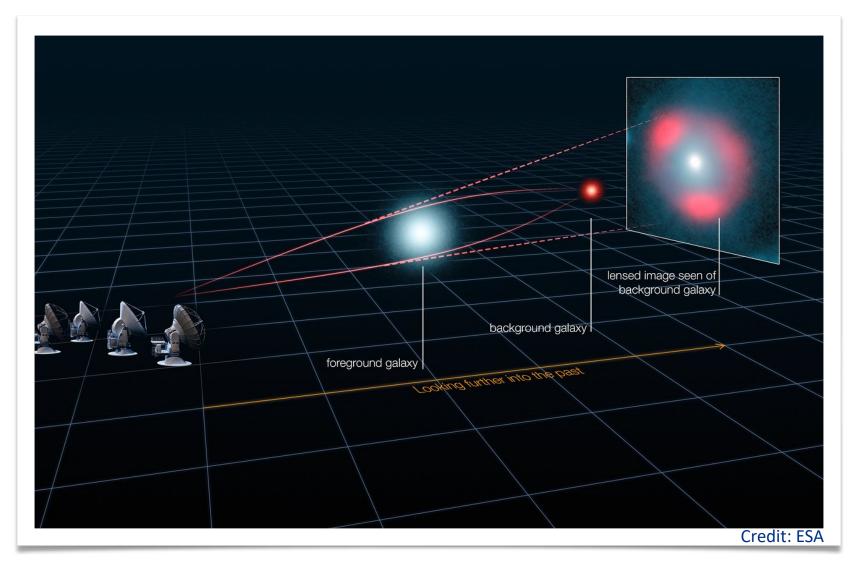
Constraining Dark Energy with Strong Lenses and Machine Learning

Sreevani Jarugula, Brian Nord, Aleksandra Ćiprijanović, Abhijith Gandrakota Fermilab

09 July, 2024 New Perspectives 2024

FERMILAB-SLIDES-24-0162-CSAID

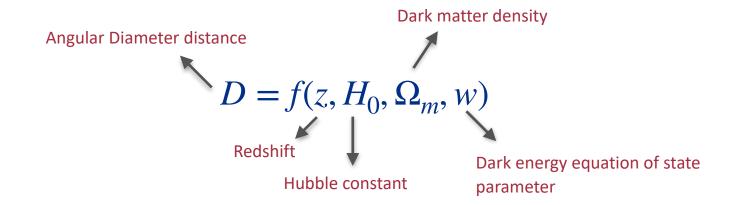
Strong Gravitational Lensing



• Combining the mass measurement within Einstein radius θ_E from lensing and stellar velocity measurements σ_v , the cosmology can be constrained through distance ratio $\frac{D_{ls}}{D_s}$ velocity dispersion $\theta_E = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_{ls}}{D_s}$ Einstein Radius

• Combining the mass measurement within Einstein radius θ_E from lensing and stellar velocity measurements σ_v , the cosmology can be constrained through distance ratio $\frac{D_{ls}}{D}$

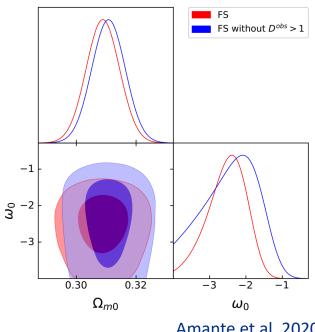
$$\theta_E = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_{ls}}{D_s}$$



Combining the mass measurement within Einstein radius θ_E from lensing and stellar velocity measurements σ_v , the cosmology can be constrained through distance ratio $\frac{D_{ls}}{dl}$

 $\theta_E = 4\pi \left(\frac{\sigma_v}{c}\right)^2 \frac{D_{ls}}{D}$

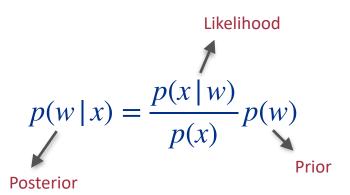
Constraints from 204 strong lens observations using MCMC

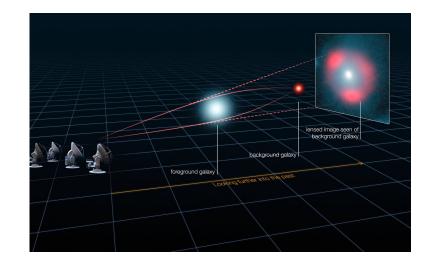


Amante et al. 2020

 $D = f(z, H_0, \Omega_m, w)$

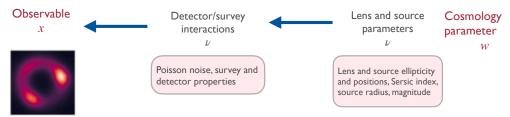
Likelihood is intractable



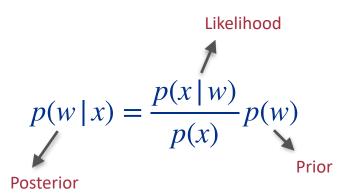


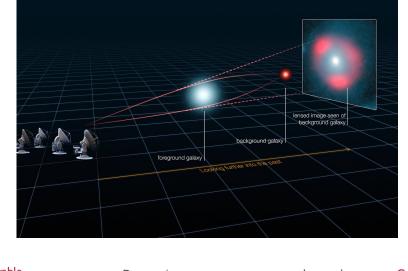
Intractable Likelihood

$$p(x \mid w) = \int p(x, \nu \mid w) d\nu$$



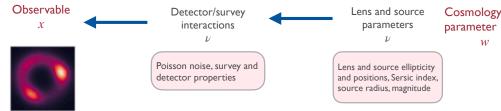
• Likelihood is intractable





Intractable Likelihood

$$p(x \mid w) = \int p(x, \nu \mid w) d\nu$$



Intractable Likelihood

 \implies S

Simulation Based Inference

- Likelihood is intractable
- $\mathcal{O}(10^5)$ strong lenses to be discovered from surveys with telescopes such as Rubin Observatory, Euclid, and Roman Space Telescope
- Traditional MCMC methods for inference are computationally prohibitive

- Likelihood is intractable
- $\mathcal{O}(10^5)$ strong lenses to be discovered from surveys with telescopes such as Rubin Observatory, Euclid, and Roman Space Telescope
- Traditional MCMC methods for inference are computationally prohibitive

$$\mathcal{O}(10^5)$$
 \longrightarrow Machine Learning

SBI : Neural Ratio Estimation (NRE)

- NRE is a classifier neural network to differentiate between the lens image-parameter pairs
 - $(x, w) \sim p(x, w)$ with class label y = 1
 - $(x, w) \sim p(x)p(w)$ with class label y = 0

SBI : Neural Ratio Estimation (NRE)

- NRE is a classifier neural network to differentiate between sample-parameter pairs
 - $(x, w) \sim p(x, w)$ with class label y = 1
 - $(x, w) \sim p(x)p(w)$ with class label y = 0
- The network learns the likelihood-to-evidence ratio

$$r(x \,|\, w) = \frac{p(x, w)}{p(x)p(w)} = \frac{p(x \,|\, w)}{p(x)}$$

SBI : Neural Ratio Estimation (NRE)

- NRE is a classifier neural network to differentiate between sample-parameter pairs
 - $(x, w) \sim p(x, w)$ with class label y = 1
 - $(x, w) \sim p(x)p(w)$ with class label y = 0
- The network learns the likelihood-to-evidence ratio

$$r(x \mid w) = \frac{p(x, w)}{p(x)p(w)} = \frac{p(x \mid w)}{p(x)}$$

 The joint likelihood-to-evidence ratio from a population of strong lens observations {x}:

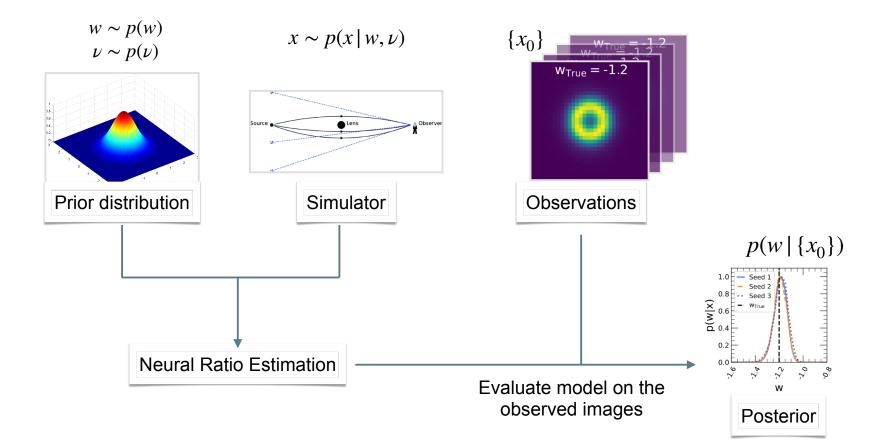
$$r(\{x\} \mid w) = \prod_i r(x_i \mid w)$$

Posterior Inference of *w*

- Using the trained NRE model for posterior inference of *w* from a population of strong lens images
- Method 1 : MCMC sampling from $r(\{x\} | w) p(w)$
- Method 2 : Analytical calculation

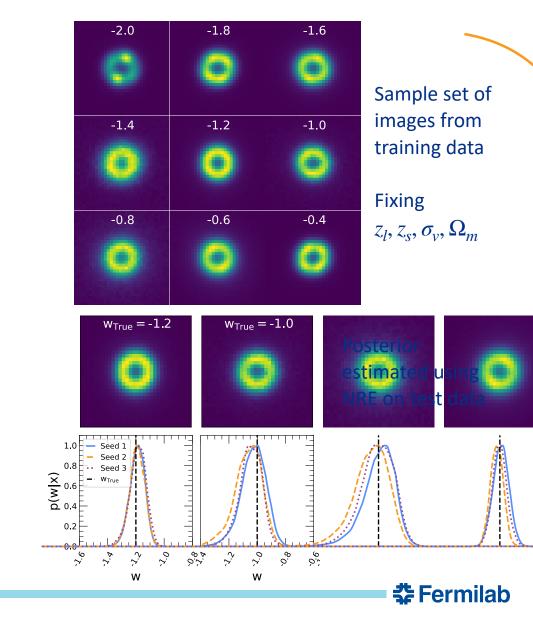
$$p(w | \{x\}) = \frac{p(w) \prod_{i} r(x_i | w)}{\int dw' \ p(w') \prod_{i} r(x_i | w')}$$

Neural Ratio Estimation workflow



Dataset and Experimental Setup

- We simulate galaxy-galaxy strong lenses using Deeplenstronomy
- DES survey conditions with *g*band images
- Image size : 32 x 32 pixels
- Prior: $w \sim \mathcal{U}(-2.0, -0.34)$
 - Training data: 640k images
 - Validation data: 160k images
 - Test data: 2k images
- w = -1.2, -1.0, -0.8
 - Test data: 3k images each

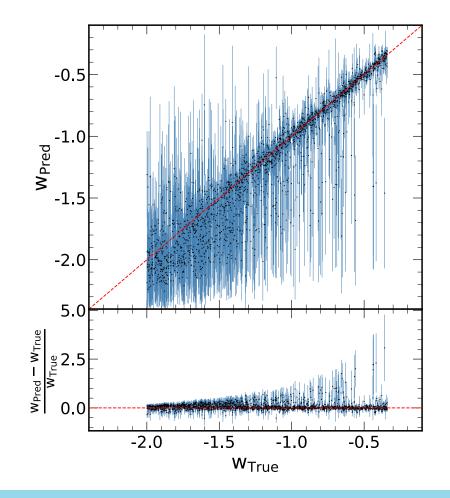


Robustness: Train the model with three different seed initializations

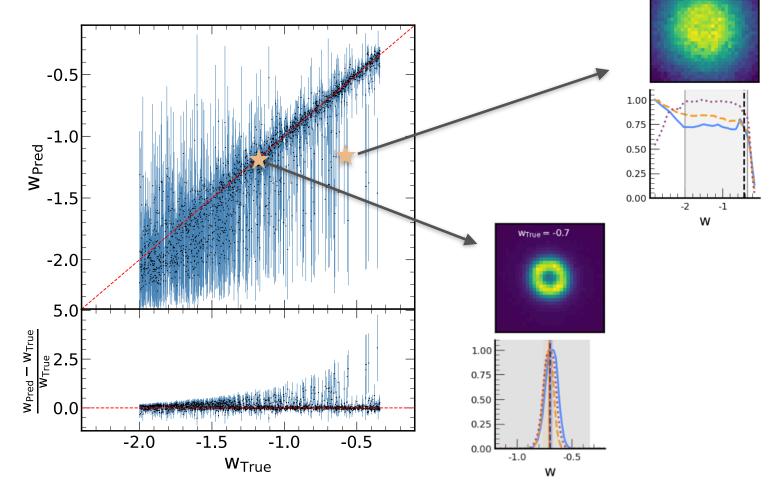
 Classifier Performance: The Area under the Receiver Operating Curve (AUC) ~ 0.92

• Model Calibration: The posterior coverage plot shows that the model is well calibrated

The model can correctly predict w within 1σ for images which have high signal-to-noise ratio

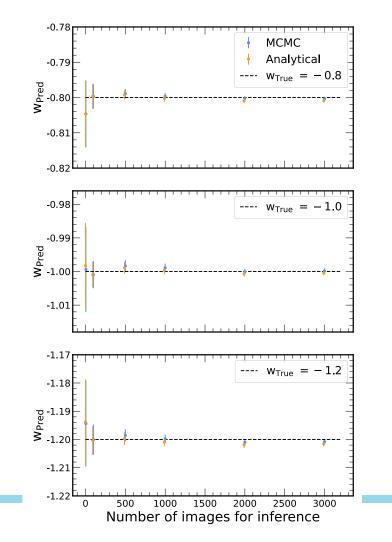


The model can correctly predict w within 1σ for images which have high signal-to-noise ratio



Results: Population-level *w* **Inference**

The posterior is more constrained as the number of observations in the population increase



🚰 Fermilab

Summary and Conclusion

- We implemented SBI with NRE for the first time for population-level posterior inference of dark energy equation-of-state parameter from strong lens images.
- Robust and well calibrated model. Provides constraints on w within 1σ .
- The posterior is more constrained with an increasing number of observations in the inference.
- This analysis is crucial for analyzing the thousands of lenses from future surveys.

Extras

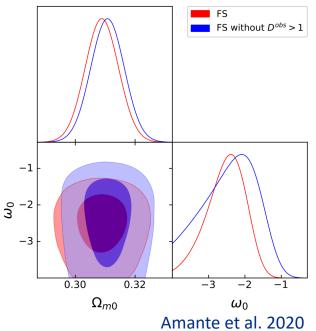
• Dark energy equation-of-state parameter w and Dark Matter density Ω_m constrain through distance ratio $\frac{D_{ls}}{D_s}$ from Einstein radius θ_E and stellar velocity dispersion σ_v

$$\theta_{E} = 4\pi \left(\frac{\sigma_{v}}{c}\right)^{2} \frac{D_{ls}}{D_{s}}$$

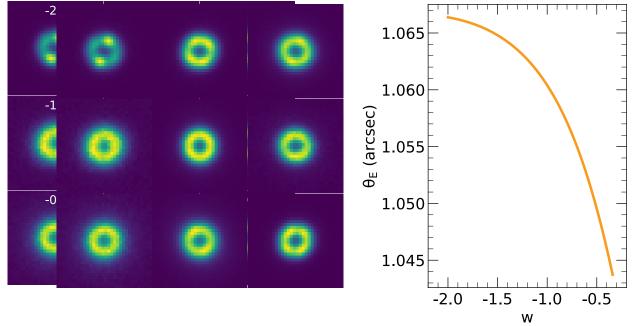
$$D(z, H_{0}, \Omega_{m}, w) = \frac{1}{1+z} \frac{c}{H_{0}} \int_{0}^{z} \frac{dz'}{h(z', \Omega_{m}, w)}$$

$$h^{2}(z, \Omega_{m}, w) = \Omega_{m}(1+z)^{3} + (1-\Omega_{m})(1+z)^{3(1+w)}$$

Constraints from 204 strong lens observations using MCMC



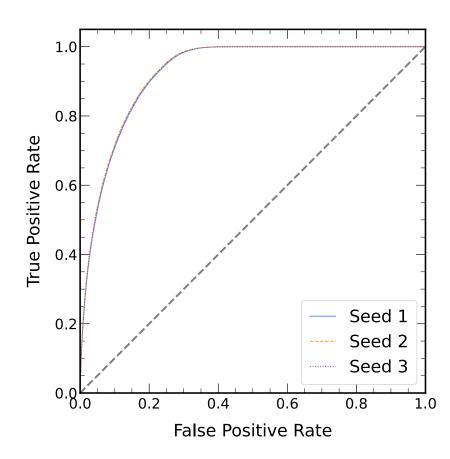
Dataset and Experimental Setup



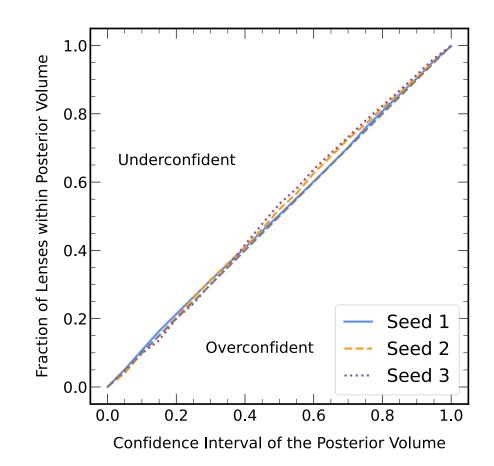
Sample set of images from training data

Correlation between Einstein Radius θ_E and w. The variation in θ_E is larger at high-w

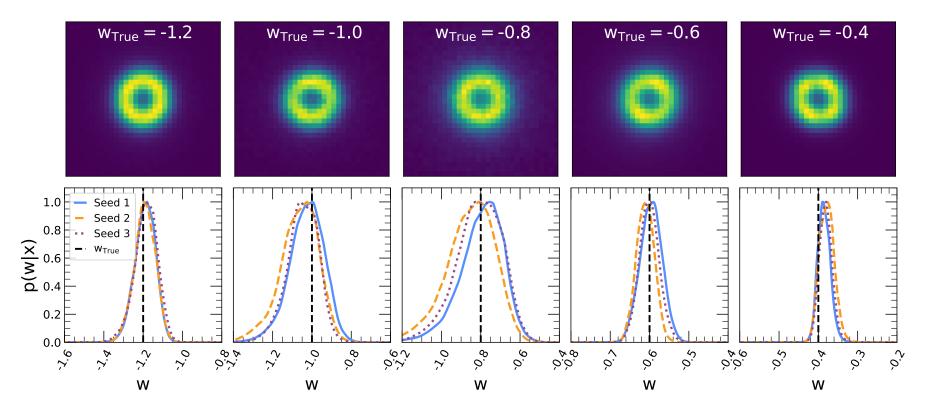
- We run the model training with three different seed initializations to check robustness
- The Area under the Receiver Operating Curve (AUC) ~ 0.92
- Model can differentiate between the two classes p(x, w) and p(x)p(w)



 The posterior coverage plot shows that the model is well calibrated



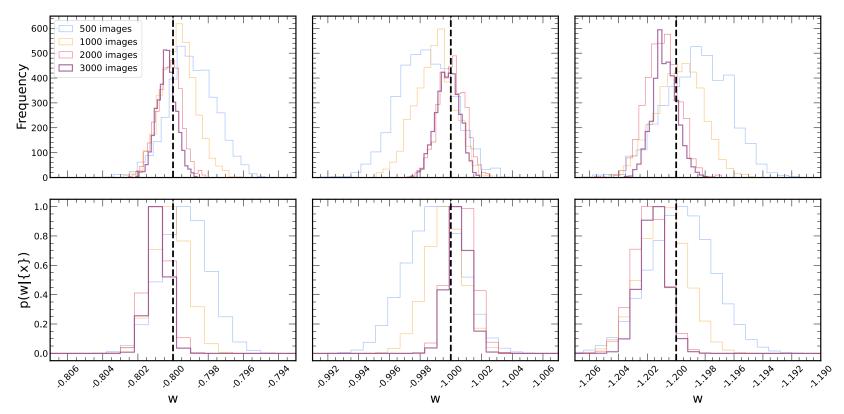
Results



Posterior obtained from single observation using NRE

Results: Population-level *w* **Inference**

 The posterior is more constrained as the number of observations in the population increase



The posterior inference $p(w | \{x\})$ from the joint population analysis of 500, 1000, 2000, and 3000 strong lens images using MCMC (Top) and Analytical method (Bottom)

