
Manish Rangarajan Shankar

Columbia University

Micro-Electronics Division, Fermilab, USA

9th July 2024

Enhancing ASIC Verification for HEP with Cocotb and PyUVM

1. Current Challenges of ASIC verification in HEP

2. What is Cocotb?

3. Advantages over UVM

4. Fast Command Controller Specification

5. Coroutine based testbench design

6. PyUVM based testbench design

7. Conclusion

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM2

Outline

• ASIC Development for HEP application often face constrains on engineering costs for

ASIC design and verification

• The current ratio of engineering costs for ASIC design to verification is almost 1:3

• Verification Methodology is the bottleneck

• Over the last few years, IP/ASIC/SoCs functional verification has been conducted using

Universal Verification Methodology (UVM)

• UVM is standardized methodology based upon System Verilog (SV) which has been

traditionally used for RTL design

• Not many in HEP field know System Verilog/UVM !

• This makes it complex ASIC verification a resource constrained task!

References:

1. UVM (Universal Verification Methodology) (acclelera.org)

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM3

Current challenges for ASIC Verification at HEP

1. Cocotb [1] interacts with HDL similators (Icarus, Xcelium, Modelsim, etc.) using either FLI (Foreign Language

Interface) or VPI (Verilog Procedural Interface) or VHPI (Verilog Hardware Procedural Interface)

2. Cocotb uses an even-driven simulation model

3. It means that simulation progresses based on events such as RisingEdge/FallingEdge of RTL signals or coroutine

scheduling rather than advancing in lockstep with a clocks.

4. Briefly coroutines are concurrent processes in testbench and are scheduled by Cocotb’s internal scheduler

5. This scheduler is responsible for determining the order of execution of the coroutines based upon events and

inter-dependencies.

References:

1. Quickstart Guide --- cocotb 1.8.1 documentation

What is Cocotb? How does it work?

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM4

• Python Integration: Seamlessly integrates with Python,
allowing for rapid testbench development and leveraging
Python's extensive ecosystem.

• Coroutines for Simplicity: Utilizes coroutines for testbench
processes, simplifying asynchronous and event-driven
simulation compared to traditional procedural approaches.

• Open-Source Community Support: Backed by a vibrant
open-source community, ensuring continuous improvement,
bug fixes, and support for various simulators.

• Enhanced Productivity: Reduces development time
through automated testing and easy integration with existing
design flows, improving overall verification efficiency.

• Flexible and Scalable: Adaptable to various design sizes
and complexities, promoting scalable verification
environments without compromising on flexibility.

Why is it necessary? Advantage over current methodology

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM5

Description

• Peripheral IP Functionality
– Samples 8-bit serial commands at 320MHz from

an external IP (e.g., lpGBT).
– Decodes these serial commands into 8-bit parallel

commands at 40MHz.

• High-Speed Operation
– Operates at a high frequency of 320MHz for

sampling input commands.

• Command Handling
– Handles 42 distinct input commands.
– Decodes and outputs through 27 corresponding

output pins.

Fast Command Controller Specification - I

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM6

RTL Block Diagram

CERN CMS FC Controller Documentation

Fast Command Controller Specification - II

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM7

FC Commands

CERN CMS FC Controller Documentation

Makefile & File Structure

• File Structure Overview

– Key directories: constants, doc, filelists, scripts,
subIP, vrf

– Important files: Project_constants.sv,
README.md, various documentation and
testbench files

• Makefile Configuration

– Sets PYTHONPATH for module paths

– Defines directories and includes for filelists and
sources

– Uses cocotb-config and tclsh for configuration
and parsing

• Clean and Build Targets

– clean_all: Removes build artifacts and
__pycache__

– tbtop: Cleans all and runs the simulation

COCOTB for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM8

References:
1. Makefile from Bootstrap cocotb-repo

Coroutines and Examples

• What is a Coroutine?
– A coroutine is a special type of function that

can pause and resume its execution.
– Enables asynchronous operations, useful for

event-driven programming.
– In cocotb, coroutines are used to create

structured, non-blocking testbench code.

• ClockGen
– Generates a clock signal based on user-

specified or default frequency (320MHz).
– Logs clock details and starts the clock

signal.

• ResetDut
– Performs synchronous reset of the DUT,

supporting both hard and soft reset modes.
– Logs reset type and status, asserts and de-

asserts reset signals.

COCOTB for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM9

Key Coroutines

• SigInitialize
– Initializes input and output signals to their default

states after a reset.
– Ensures the DUT starts with known, stable signal

values.

• SendFC_Idle
– Sends the IDLE command five times to initialize

the DUT properly.

• SendFC
– Sends a specific fast command serially via the

command_rx line.
– Converts command data to bits and transmits them

at the clock edge.

• SendRandomFC
– Chooses and sends a random fast command from

a predefined list.
– Useful for stress testing and validating DUT

response to various commands.

COCOTB for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM10

Cocotb Test Implementation

• Cocotb Test Decorator: @cocotb.test()

– Purpose: Marks a function as a test that will
be executed by the cocotb test framework.

– Usage: Applied to functions that define the
test logic for the DUT.

– Benefits: Simplifies test organization and
execution, integrates seamlessly with cocotb’s
coroutine-based structure.

• Test Function Structure

– Logging: Provides information about the test
being run and the DUT.

– Coroutine Calls: Sequentially calls coroutines.

COCOTB for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM11

PYUVM for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM12

Pyuvm_test

Proposed PyUVM Testbench

FC_Test and FC_Env

• PyUVM Test Implementation

– Defines a UVM test class using the @pyuvm.test() decorator.

– Implements the build phase to set up the test environment.

– Implements the run phase to execute the test sequence.

• FC Env Build Phase

– Initializes the UVC Components

• DUT instance retrieval.

• Configures sequencer communication.

• Connect Phase

– Links UVC components using analysis ports

• Run Phase

– Controls simulation:

• Stops driver.

PYUVM for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM13

FCDriver (PYUVM Driver)

• Purpose
– Drives stimulus to the DUT and manages sequences

to validate functionality.
• Initialization

– Sets up the analysis port (ap) to communicate with
other components.

• Run Phase
– Executes sequences:initialize_sequence(): Initializes

the DUT with necessary
signals.randomfc_sequence(): Sends random fast
commands to the DUT.

– Manages sequence flow and handles different
command transactions (Initialize, RandomFC).

• Stop Mechanism
– Signals when to stop processing sequences to

ensure controlled test execution.

PYUVM for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM14

FCMonitor (PYUVM Monitor)

• Purpose
– Monitors signals from the DUT to capture behavior

and ensure correct operation.
• Initialization

– Configures to monitor specific cycles of interest to
capture signal changes.

• Run Phase
– Monitors changes in signals, especially

clk40_out_p_tb, to track DUT behavior.
– Captures data from the DUT and sends analyzed

transactions to the analysis port (ap).
– Provides detailed insights into signal integrity and

performance metrics.

PYUVM for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM15

FC_Scoreboard(PYUVM Scoreboard)

• Purpose
– Verifies DUT behavior by comparing expected

results with actual outputs.
– Captures command and result transactions for

analysis.
• Connect Phase

– Connects cmd_get_port and result_get_port
to their respective FIFO get exports.

• Check Phase
– Iterates through transactions to validate

correctness.
– Compares received results against expected

behavior based on issued commands.
– Counts successful checks (check_count) and

identifies errors if validation fails.

PYUVM for FC Controller

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM16

• Achievement

– Developed and implemented both testbenches for the IP verification within
approximately 6-8 weeks.

• Verification

– Successfully carried out IP verification with added randomization and
regression testing.

• Current Work

– Coding up coverage to enhance verification metrics.

– Exploring the concept of using config_db for configuration management,
akin to uvm_config_db in UVM.

Conclusion

7/9/2024 Manish | Enhancing ASIC verification for HEP using Cocotb & PyUVM17

