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Motivation

e LHC upgrade requires technologies to deal with an increase in
luminosity, pileup, & data, in a high radiation-environment

e LHC pp collisions occur at 40MHz, are selected by a trigger to read
out events ~ TMHz

e  Currently, pixels are limited by readout bandwidth, so they are not in
the trigger; e.g., events with new physics only in the pixel data are not
selected at all

e Al embedded on a chip can be used to filter data at the source,
enabling data reduction AND taking advantage of pixel information to LHC Luminosity

enable new physics measurements and searches e LHC design 10** cm?s™
e |HCRuns 2/3: 2 x LHC
e HL-LHC:5t07 xLHC




Data reduction

e Data reduction through

o Filtering through removing low p_ clusters
o Featurization through converting raw data to
physics information

e Combination of approaches can reduce
data rate enough to use pixel
information at Level 1
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Particle tracks

e Connecting the dots between charge collected
in different pixel layers creates a particle track

e Solenoid magnet immerses the pixel detector in
a B-field, causing tracks to curve

Very curved — low momentum
Almost straight — high momentum

a recorded: 2018-May-18 01:11:35.832512 GMT
n / Event / LS: 316505 / 182749938 / 166




Simulated dataset (link)

e Simulated charge deposition from pions

o Initial conditions = fitted tracks from CMS

o For a range of hit positions, incident angles
e Assume a futuristic pixel detector

o 21x13 array of pixels
50x12.5 pm pitch, 100 um thickness
Located at radius of 30 mm
3.8 T magnetic field
Time steps of 200 picoseconds
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https://zenodo.org/record/7331128

CIaSSiﬁ CatiOn GOaIS Baseline full precision model

Layer (type) Output Shape Param #
e Keep as many high p. clusters as possible Rateilaten (o 14) 6
for h SICS dense (Dense) (None, 128) 1920
p y dense_1 (Dense) (None, 3) 387

e Decrease data bandwidth

Total params: 2,387
Trainable params: 2,307
Non-trainable params: ©

Inputs Output Classes

. Model 1: ysize Low pr (positively charged)
y-position + o el 2: yprofile # Heure |# Low pr (negatively charged)
Model 3: yprofile+time High pr




ML Inputs: y-position

e The shape of the cluster is strongly correlated
with its y-position (its azimuthal position with
respect to the center of the sensor)

e Cluster y-size vs. y-position shows clear

correlation between size & position
o Decrease in cluster size from left to right is due to . S Tomplps)
Lorentz drift o, A |
o The final model chosen uses y-profile (not y-size) due . ’
to the former’s better performance
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ML Inputs: y-profile

e We use ML due to complicated pulse shapes, and drift &

induced currents

e y-profile (sum over pixel rows) projects the cluster shape on
the y-axis and is sensitive to the incident angle (8 and thus the

particle’s p.

e x-profile (sum over pixel columns) is parallel to B, and

uncorrelated with p.
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Metrics
# clusters classified as high pr

Signal Eff. =
J i # clusters > 2 GeV
1.00 1+ et + o+
e |
0.80 - o & {*"ﬁ“m:t ooty t + Bkg. Rej. — # clusters classified as low pr
_ 22 Y # clusters < 2 GeV
E 0.60 4 i
g +
t o I
H Model Sig. efficiency Bkg. rejection
. Model 1 84.8 % 26.6 %
R Hi Model 2 93.3 % 25.1 %
b model1 f Model 3 97.6 % 21.7 %
0.00 T T # T v
-4 -2 0 2 4
true Pr (GeV)

Model 2 was chosen for implementation



Data Reduction: Estimate 57.1% ~ 75.7%

Fraction of dataset Rejection rate

Simulated tracks 40% 37.6 +£1.0%
Multi-pixel untracked 55% 63.2 +£1.1%
Single pixels 5% 100%




hls4ml implementation by G. Di Guglielmo, ASIC chip design by B. Parpillon

On-chip implementation

e Design space optimization & Region specific implementation
o 13 locally customizable neural network with reprogrammable
weights so we can adapt to changing conditions

889 um

Digital Momentum classifier

Signal processing clusters distributed in-between sensing regions

4 analog frontends, surrounded by a digital region
Simulation: 13 x 21; Chip: 16 x 16
Design expected to operate at < 300 pW

222 um
Area < 0.2mm?

Reprogrammable weights distributed across the matrix
(highlighted in white)



Next generation studies: untracked clusters

e The simulated dataset is derived from clusters in CMS that are combined with

signatures in other detector layers to form particle tracks

e But, in an example CMS data run, only 40% of clusters are tracked this way

e ~60% remaining clusters (“untracked”) can result from sources such as
very low p_ particles, radiation backgrounds, detector effects

e For our first study, we never specifically trained on these untracked
clusters, but still rejected about 63% of them

e The goals of this project is to try to reject more of them




Our idea

e Use a simple autoencoder to transform tracked and untracked clusters into a

5-dimensional space
e Use UMAP (a dimensionality reduction tool) to help identify tracked vs.

untracked clusters, & give us insight on next steps

Tracked clusters in orange, untracked in blue

Arb. units

Arb. units



Work in progress
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e Untracked clusters are clearly something new
data-wise

e Looking at ways to distinguish them, and improve our

model



Other on-going work in the group

e Use a regression model to predict angles and
positions, and work on designing a v2 version
of our chip

e Test our p, filter chip

e Prepare the way to test our chips with a sensor
in a testbeam




Smart Pixels Collaboration

https://fastmachinelearning.org/smart-pixels/
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