FERMILAB-SLIDES-24-0170-CMS

1

Smart Pixel Sensors for the HL-LHC

New Perspectives July 9, 2024

Jieun Yoo, Abhijith Gandrakota, Lindsey Gray, Morris Swartz, & Dahei Wen for the **Smart Pixels Collaboration**

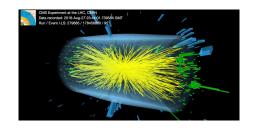
Motivation

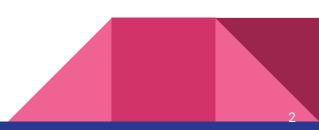
- LHC upgrade requires technologies to deal with an increase in luminosity, pileup, & data, in a high radiation-environment
- LHC pp collisions occur at 40MHz, are selected by a trigger to read out events ~ 1MHz
- Currently, pixels are limited by readout bandwidth, so they are not in the trigger; e.g., events with new physics only in the pixel data are not selected at all
- Al *embedded* on a chip can be used to filter data at the source, enabling data reduction AND taking advantage of pixel information to enable new physics measurements and searches



LHC Luminosity

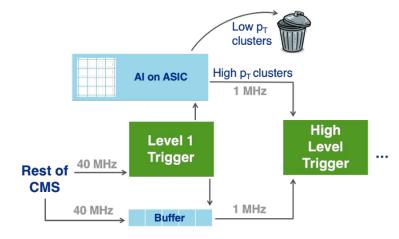
- LHC design 10³⁴ cm⁻² s⁻¹
- LHC Runs 2/3: 2 x LHC
- HL-LHC: 5 to 7 x LHC





Data reduction

- Data reduction through
 - **Filtering** through removing low p_T clusters
 - **Featurization** through converting raw data to physics information
- Combination of approaches can reduce data rate enough to use pixel information at Level 1

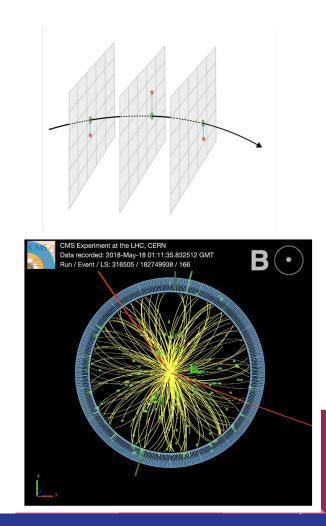


Cartoon created by J. Dickinson

Particle tracks

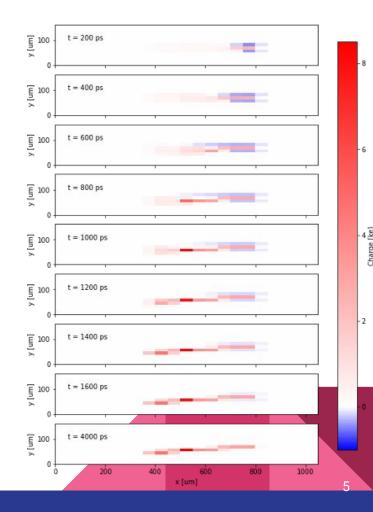
- Connecting the dots between charge collected in different pixel layers creates a particle track
- Solenoid magnet immerses the pixel detector in a B-field, causing tracks to curve

Very curved \rightarrow low momentum Almost straight \rightarrow high momentum



Simulated dataset (link)

- Simulated charge deposition from pions
 - Initial conditions = fitted tracks from CMS
 - For a range of hit positions, incident angles
- Assume a futuristic pixel detector
 - 21x13 array of pixels
 - \circ 50x12.5 μ m pitch, 100 μ m thickness
 - Located at radius of 30 mm
 - 3.8 T magnetic field
 - Time steps of 200 picoseconds



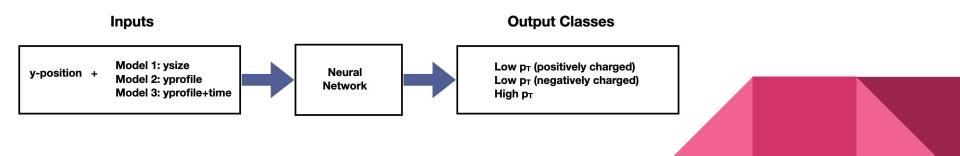
Classification Goals

- Keep as many high p_T clusters as possible for physics
- Decrease data bandwidth

Baseline full precision model

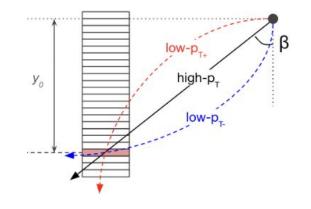
Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 14)	0
dense (Dense)	(None, 128)	1920
dense_1 (Dense)	(None, 3)	387

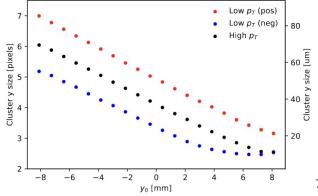
Total params: 2,307 Trainable params: 2,307 Non-trainable params: 0



ML Inputs: y-position

- The shape of the cluster is strongly correlated with its y-position (its azimuthal position with respect to the center of the sensor)
- Cluster y-size vs. y-position shows clear correlation between size & position
 - Decrease in cluster size from left to right is due to Lorentz drift
 - The final model chosen uses y-profile (not y-size) due to the former's better performance





ML Inputs: y-profile

- We use ML due to complicated pulse shapes, and drift & induced currents
- y-profile (sum over pixel rows) projects the cluster shape on the y-axis and is sensitive to the incident angle β and thus the particle's p_T

Charge [ke]

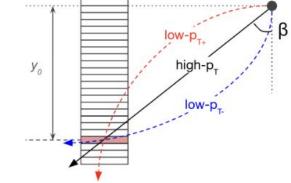
12

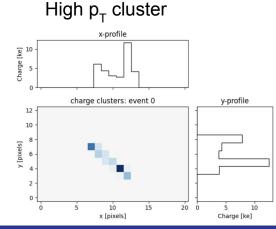
10

2

y [pixels]

• x-profile (sum over pixel columns) is parallel to B, and uncorrelated with $\ensuremath{\mathsf{p}_{\mathsf{T}}}$





Low p_{T} positively charged cluster

x-profile

charge clusters: event 8

10

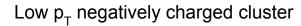
x [pixels]

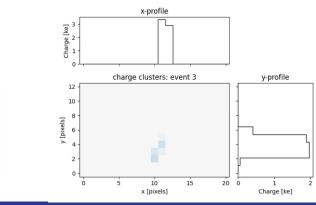
15

20 0.0 2.5 5.0 7.5

y-profile

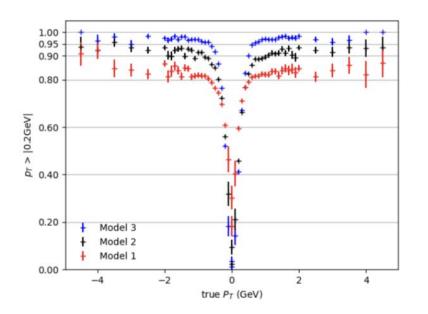
Charge [ke]





8

Metrics



Signal Eff. =
$$\frac{\# \text{ clusters classified as high } p_T}{\# \text{ clusters} > 2 \text{ GeV}}$$

Bkg. Rej. =
$$\frac{\# \text{ clusters classified as low } p_T}{\# \text{ clusters} < 2 \text{ GeV}}$$

tion

Model 2 was chosen for implementation

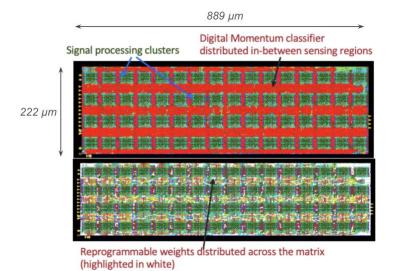
,

Data Reduction: Estimate 57.1% ~ 75.7%

	Fraction of dataset	Rejection rate
Simulated tracks	40%	$37.6 \pm 1.0\%$
Multi-pixel untracked	55%	$63.2 \pm 1.1\%$
Single pixels	5%	100%

On-chip implementation

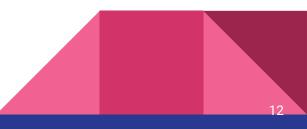
- Design space optimization & Region specific implementation
 - 13 locally customizable neural network with reprogrammable weights so we can adapt to changing conditions



- 4 analog frontends, surrounded by a digital region
- Simulation: 13 x 21; Chip: 16 x 16
- Design expected to operate at < 300 μW
- Area < 0.2mm²

Next generation studies: untracked clusters

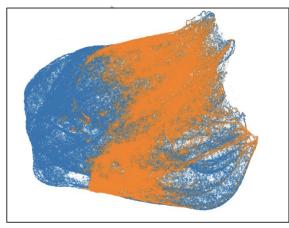
- The simulated dataset is derived from clusters in CMS that are combined with signatures in other detector layers to form particle tracks
- But, in an example CMS data run, only 40% of clusters are tracked this way
- ~60% remaining clusters ("untracked") can result from sources such as very low p_T particles, radiation backgrounds, detector effects
- For our first study, we never specifically trained on these untracked clusters, but still rejected about 63% of them
- The goals of this project is to try to reject more of them



Our idea

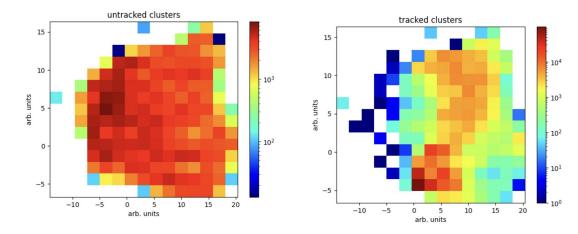
Arb. units

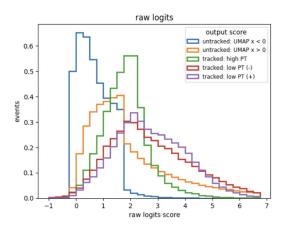
- Use a simple autoencoder to transform tracked and untracked clusters into a 5-dimensional space
- Use UMAP (a dimensionality reduction tool) to help identify tracked vs. untracked clusters, & give us insight on next steps



Tracked clusters in orange, untracked in blue

Work in progress





- Untracked clusters are clearly something new data-wise
- Looking at ways to distinguish them, and improve our model

Other on-going work in the group

- Use a regression model to predict angles and positions, and work on designing a v2 version of our chip
- Test our p_{T} filter chip
- Prepare the way to test our chips with a sensor in a testbeam

Smart Pixels Collaboration

https://fastmachinelearning.org/smart-pixels/

Members

- Cornell University Jennet Dickinson
- Fermi National Accelerator Laboratory: Douglas Berry, Giuseppe Di Guglielmo, Farah Fahim, Abhijith Gandrakota, Lindsey Gray, James Hirschauer, Ron Lipton, Benjamin Parpillon, Gauri Pradhan, Chinar Syal, Nhan Tran, and the FNAL ASICS team
- Johns Hopkins University: Petar Maksimovic, Morris Swartz, Dahai Wen
- Northwestern University: Manuel Blanco Valentin
- Oak Ridge National Laboratory: Shruti R. Kulkarni, Aaron Young
- University of Chicago: Anthony Badea, Karri DiPetrillo, Rachel Kovach-Fuentes, Carissa Kumar, Emily Pan
- University of Illinois Chicago: Corrinne Mills, Danush Shekar, Mohammad Abrar Wadud, Jieun Yoo
- University of Illinois Urbana-Champaign: David Jiang, Mark S. Neubauer
- University of Kansas: Alice Bean

