

ROAD TO PROSPECT-II

July 8

Franz Machado
Illinois Institute of Technology
on behalf of the PROSPECT Collaboration

fmachado@hawk.iit.edu

DOE Report Number: FERMILAB-SLIDES-24-0145-V

Table of content

- PROSPECT Motivation: Reactor Antineutrino Anomaly (RAA)
- PROSPECT-I Design
- PROSPECT-I Physics Results
- From PROSPECT-I to PROSPECT-II
- PROSPECT-II Detector Design
- PROSPECT-II Deployment
- PROSPECT Background Studies
- PROSPECT-II Projected Results
- Conclusion

PROSPECT Motivation: Reactor Antineutrino Anomaly (RAA)

- Antineutrino flux predictions differs from precision measurements

PROSPECT Motivation: Reactor Antineutrino Anomaly (RAA)

- Antineutrino flux predictions differs from precision measurements
- Possible explanations:
 - -Flux misprediction
 - -Oscillation of active antineutrinos into sterile states

PROSPECT-I Design

 A 4-ton, segmented detector designed to search for sterile neutrino oscillation and ²³⁵U spectrum measurement.

PROSPECT-I Design

- A 4-ton, segmented detector designed to search for sterile neutrino oscillation and ²³⁵U spectrum measurement.
- Reactor on data from Mar -Oct 2018
- 6.7 9.2m from HFIR

PROSPECT-I Design

- A 4-ton, segmented detector designed to search for sterile neutrino oscillation and ²³⁵U spectrum measurement.
- Reactor on data from Mar -Oct 2018
- 6.7 9.2m from HFIR
- 154 segments 14 x 11 grid
- Each segment:
 - 2 PMTs
 - Filled with ⁶Li-doped LS (LiLS)
 - Pulse Shape Discriminator

PROSPECT-I Design: IBD Detection Principle

Great signal to background ratio (4:1) and energy resolution.

Oscillation analysis: Neutrino-4 best-fit point is ruled out at >5σ CL

Spectrum measurement: Observation of excess at ~ 5 MeV

- Limits on Sub-GeV Dark Matter from the PROSPECT Reactor Antineutrino Experiment arXiv:2104.11219
- Joint analysis:
 - (2022) Daya Bay Phys. Rev. Lett. 128, 081801
 - (2022) STEREO Phys. Rev. Lett. 128, 081802
- Final Oscillation Analysis <u>arXiv:2406.10408</u>
- Neutrino Directionality <u>arXiv:2406.08359</u>
- Final Spectrum analysis Phys. Rev. Lett. **131**, 021802

Coming out soon:

- Absolute flux measurement
- Joint-Search for Light Sterile Neutrino Oscillations by PROSPECT, STEREO, and Daya Bay

From PROSPECT-I to PROSPECT-II

PROSPECT-I

- LiLS ingress into PMT housing caused PMT degradation
- LiLS degradation caused effective attenuation length and light collection degradation

From PROSPECT-I to PROSPECT-II

 LiLS ingress into PMT housing caused PMT degradation

- LiLS degradation

PROSPECT-II

- Maintain PROSPECT-I performance
- Improve stability
 - Remove PMTs from active volume
 - Minimize LiLS contact with other materials
 - Optimize LiLS isolation

PROSPECT-II Detector Design

Slimmer design → allows 20% more active volume, keeping the vessel size the same

PROSPECT-II detector design

Mineral oil between ICV and OCV provides optical coupling and shielding

LiLS overflow system

Active cooling

Cabling out of LiLS volume

PROSPECT-II Deployment

HFIR remains as our target operation site for HEU measurements

Aiming for 14 cycles recorded over a 2-3 year run period

Detector is movable → **LEU site?**

Benefits described at arXiv: 2301.13123

Oak Ridge National Laboratory Neutron Production Overview

PROSPECT Background Studies

Here we can see the effects of different background scenarios, a better understanding of those is necessary to accomplish better projected results.

Longer segments have an impact in background estimates too

Simplified side view of HFIR site

Oscillation: Extended sensitivity!!

Parameter		P1	P2 at HFIR	P2 at LEU
Exposure	Average Baseline (m)	7.9	7.9	25
	Reactor-On Days (d)	105	336	548
	Reactor-Off Days (d)	78	360	61
	Signal:Background	1.4	4.3	19.3
	IBD Statistics (N_{IBD})	50560	3.74×10^{5}	2.72×10^{6}
	Effective Statistics (N_{eff})	15195	2.08×10^{5}	1.79×10^{6}

Oscillation:

- More phase-space coverage, specially at higher Δm_{41}^2
- Addresses Neutrino-4
- Better coverage at higher Δm_{41}^2 than beam experiments
- Help us have a clearer picture on the Long Baseline CP Violation

• HEU + LEU deployment:

- Oscillation sensitivity extended to lower Δm^2_{41} from longer baseline

Spectrum:

 Double the precision, exceeding the model uncertainties for the majority of the antineutrino spectrum

• HEU + LEU deployment:

- Oscillation sensitivity extended to lower Δm^2_{41} from longer baseline
- Flux measurements at both reactors yield unambiguous measure of the isotopic antineutrino yield

Case	Description	Precision on σ_i (%)		
	Description	^{235}U	²³⁹ Pu	^{238}U
1	Daya Bay LEU	3.7	8.2	30
2	Daya Bay LEU + P-II HEU	2.4	6.3	21.3
3	P-II LEU + P-II HEU+	1.4	3.4	15.9
4	P-II LEU + P-II HEU+, Correlated	1.4	3.0	8.7
_	Model Uncertainty [66]	2.1	2.5	11.2

J. Phys. G: Nucl. Part. Phys. 49 070501

• Flux:

- Fundamental for reactor CEvNS experiments
- Provide better limits on BSM phenomena
- Current best measurement is STEREO's
- P2 absolute flux measurement can be best: potential for lower HFIR thermal power uncertainty

Overview of ²³⁵U Flux Measurements (by STEREO Collaboration)¹

Conclusion

 PROSPECT-I was a successful experiment with a number of valuable analysis

- PROSPECT-II robustness give us the chance to push even further the borders of knowledge we currently have in the field
- The collaboration is actively engaged on the design of P2

Thank you!

IIT+Virtual

prospect.yale.edu

BACKUP SLIDES

Key Detector Features

- Prompt e+ gives \overline{v}_e energyestimate (>400 pe/MeV)
- Fully-contained, single-cell delayed n-6Li signal
- Prompt, delayed PSD differ from common background classes
- Double-end PMT readout and segmentation allows XYZ reco and topology cuts

Great signal to background ratio and energy resolution!
S:B of 4:1

Oscillation analysis:

 No indication of sterile neutrino and rejected neutrino-4 best-fit point at 5σ in final analysis

Spectrum measurement:

- Observation of excess at
 - ~ 5 MeV
- Isotopic composition of 'The Bump':
 - Equal Isotope hypothesis preferred:
 - No 235U disfavored at 3.2σ
 - All 235U disfavored at 2.2σ

Check this values with the source

