

University of Sheffield

SBND IN 10 MINUTES

Nguyen Vu Chi Lan (she/her) on behalf of the SBND Collaboration

New Perspectives Conference Fermilab

8 – 9th July 2024

The SBND detector being lifted into the cryostat (April 2023).

FERMILAB-SLIDES-24-0147-V

The Short-Baseline Neutrino Program

The Short-Baseline Neutrino Program

MiniBooNE & LSND reported a **Low Energy Excess** (LEE) in v_e appearance searches – an outstanding anomaly for 10+ years.

The SBN program was designed to be **the world-leading short baseline experiment** with the goal to investigate the anomaly.

Made up of three LArTPCs along the Booster Neutrino Beam located at Fermilab.

The same neutrino beam and detector technology will **constrain systematic uncertainty to the %-level**.

Experiments At The SBN: ICARUS

Experiments At The SBN: MicroBooNE

Phys. Rev. Lett. 128, 241801 MicroBooNE Observed Non-ve background Intrinsic Ve Total, no eLEE (x = 0.0) Total, w/ eLEE (x = 1.0) 1eNp0π 1e0p0π 1eX [200 MeV.500 MeV] [150 MeV.650 MeV] [150 MeV.650 MeV] [0 MeV.600 MeV]

MicroBooNE

Booster Neutrino Bea

Middle detector at 470 m baseline

Data taken between 2015 – 2021

67+ publications and counting!

The LEE search result does not see MiniBooNE-like excess

SBN Near Detector

Booster Neutrino Beam Target Hall

Experiments At The SBN: Short-Baseline Near Detector

Short-Baseline Near Detector

1. Neutrino interacts with argon nucleus producing (charged) particles.

2. Charged particles ionise & excite argon atoms as they propagate through the detector. Creating ionisation electrons and 128nm scintillation photons.

SBND Detection Systems: LArTPC

New Perspectives Conference | July 2024

SBND Detection Systems: LArTPC

Once arrive at the anode,

4.

SBND Detection Systems: Photon Detection System

5. Scintillation light detected by photon detection system (PDS) located behind wire planes.

New Perspectives Conference | July 2024

SBND Detection Systems: Photon Detection System

New Perspectives Conference | July 2024

SBND Detection Systems: Cosmic Ray Tagger

SBND Physics

SBND Physics: Oscillation

Only 110 m from the BNB target means 3 years of exposure results in 1×10^{21} POT, equivalent to 10 million total neutrino events (CC+NC).

SBND statistics plays an important role in **characterising the unoscillated neutrino flux** to significantly reduce systematic uncertainties.

Together with the SBN program, aims to resolve tension in eV-scale sterile neutrino results by simultaneously measuring v (dis)appearance and v_{μ} disappearance.

Neutrino 2024 Poster Sterile neutrino searches @SBN by Nupur Oza and Ibrahim Safa

500

1.000

Neutrino energy (MeV)

1,500

Dscillation probability (%)

0.2

0.1

0.30

0.05

0.00

Far-near signal

2,000

SBND Physics: Cross Sections

SBND will collect the world's largest dataset of v-Ar interactions.

This will allow **for high precision cross-section measurements** of a series of inclusive and exclusive channels.

Cross section posters presented at Neutrino 2024:

CC event rate for 10e20 POT: ~6M v_{μ} CC

SBND Physics: PRISM

Precision Reaction Independent Spectrum Measurement

Due to SBND's **proximity to the beam target** *and* the **intentional offset of the beam** with respect to the detector centre a "PRISM" effect can be achieved without moving SBND.

PRISM provides extra handles for improving systematic constraints.

Neutrino 2024 Poster

Sterile neutrino searches using PRISM by Beth Slater

New Perspectives Conference | July 2024

SBND Physics: Beyond Standard Model

Proximity to target gives SBND sensitivity to **various BSM scenarios as alternative LEE explanations**.

Exploit **unique features** of BSM signals:

- Late arrival due to heaviness
- Highly beam collimated
- Blip tracks

May 2023

Began commissioning across various areas.

May 2023

Began commissioning across various areas.

May 2023

Began commissioning across various areas.

May 2023

Began commissioning across various areas.

University of Sheffield

May 2023

Dec 2023

installation.

Completed TPC

Began commissioning across various areas.

May 2023

Began commissioning across various areas.

Dec 2023

Completed TPC installation.

HV donut installation

Dec 2023

Completed TPC

installation.

Began commissioning across various areas.

Dec 2023

installation.

Completed TPC

HV donut installation

Purity monitoring

installation

Cables, cables and cables!

University of Sheffield

May 2023

New Perspectives Conference | July 2024

Cables, cables and cables!

New Perspectives Conference | July 2024

 Dec 2023
 Fe

 Completed TPC
 Cl

 installation.
 SE

 HV donut installation
 SE

Feb 2024

Chilly detector checkout, SBND is ready for Ar fill.

Commissioning Highlights

TPC readout electronics **show excellent signal/noise performance**.

PMTs are powered on and collecting data, gain calibration is in progress.

CRT modules ~70% installed and commissioned.

Both PMTs and CRTs can see the beam!

As of last week, the commissioning team successfully ramped to the nominal voltage up at 100 kV!

Conclusion

SBND is an exciting experiment with physics goals ranging from the **eV-sterile neutrino oscillation** search to a rich **cross-section program**, to the **PRISM** technique implementation and a variety of **BSM searches**.

Commissioning shows **excellent detector performance** across CRTs, PMTs and TPC electronics with **commissioning data collecting happening now**.

Physics data taking will begin later this year.

Stay tuned for exciting results in the coming years!

Monday 8th July

Studying Neutrino-Nucleus Interactions at SBND	Brinden Carlson
One West, Fermi National Accelerator Laboratory	13:45 - 14:00
Heavy Neutral Leptons searches on SBND	Luis Pelegrina Gutiérrez
One West, Fermi National Accelerator Laboratory	14:00 - 14:15
SBND Analysis using ML Reconstruction Chain	Castaly Fan
One West, Fermi National Accelerator Laboratory	16:30 - 16:45

Tuesday 9th July

The Search for Dark Photons at the Short-Baseline Near Detector	Rohan Rajagopalan
One West, Fermi National Accelerator Laboratory	10:45 - 11:00

Thank You! Cám ơn! Questions and Comments are welcome!

SBND Collaboration Meeting June 2024 at Fermilab