MicroBooNE in 10 Minutes

Kate Pletcher on behalf of the MicroBooNE Collaboration New Perspectives 2024 July 8, 2024

What is MicroBooNE?

The **Micro Boo**ster **N**eutrino **E**xperiment is an 85-tonne liquid argon time projection chamber (LArTPC) experiment part of the Fermilab Short Baseline Neutrino (SBN) program with ~190 collaborators

 \rightarrow On-axis to the booster neutrino beam (BNB), 470 m from target

 \rightarrow Off-axis from neutrinos at the main injector (NuMI) beam by 8°, ~680 m downstream from target

The MicroBooNE Detector: LArTPCs

- The light readout system behind the anode plane uses photomultiplier tubes (PMTs) to detect scintillation photons, giving a start time for the neutrino interaction
- The Cosmic Ray Tagger (CRT), a plastic scintillator detector, was installed around the cryostat for improved cosmic ray rejection

LArTPC Capabilities

- → Calorimetry for measuring particle energy
- → Millimeter-scale spatial resolution
- → Particle identification

Kate Pletcher | New Perspectives 2024

MicroBooNE Physics Goals: Detector Physics and Calibrations

Detector Physics & Calibrations

> Investigating the MiniBooNE Low Energy Excess and other Beyond the Standard Model Physics

> > Neutrino-Argon Cross Sections

Detector Physics and Analysis Methods

- MeV-Scale Reconstruction
 - Used for radiopurity measurement of radon effects
 - PRD 109 (2024), 092007
- Nanosecond Timing
 - Reconstruct neutrino interaction times at O(1 ns)
 - Helpful for cosmic rejection and BSM particle searches
 - PRD 108 (2023) 5, 052010
- Neutron Identification
 - Novel detection technique applicable to any LArTPC
 - o <u>arXiv:2406.10583</u>

Fraction of cosmic background events to neutrino events across ns-scale interaction timing

 \rightarrow Lots of data from 5 years of data taking & dedicated detector R&D runs!

MicroBooNE Physics Goals: MiniBooNE LEE & BSM Physics

Detector Physics & Calibrations

> Investigating the MiniBooNE Low Energy Excess and other Beyond the Standard Model Physics

> > Neutrino-Argon Cross Sections

MiniBooNE Low Energy Excess (LEE)

MiniBooNE (Mini Booster Neutrino Experiment)

- Observed 4.8σ excess (LEE) of shower events at low energy
- Predicted to be produced by *electron* or *photon* events

As a mineral oil Cherenkov detector, MiniBooNE cannot distinguish between electrons and photons...but MicroBooNE can!

Probing the MiniBooNE LEE Anomaly

Final State Searches:

Diagrams courtesy of Matt Toups

New Results: Semi-Inclusive Search for Pionless v_{e} Events

2022 results disfavor electron-like explanation

(Phys. Rev. D105, 112004 (2022), Phys. Rev. Lett. 128, 241801 (2022), Phys. Rev. Lett. 128, 241801 (2022))

This 2024 analysis:

- \rightarrow First analysis using full MicroBooNE data set of 1.11×10²¹ POT (previous result uses 6.86×10²⁰ POT)
- \rightarrow Test in reconstructed neutrino energy and with new model in shower energy and angle kinematics
- → Use of additional constraint samples: $1\mu Np0\pi$, $1\mu 0p0\pi$, and $\nu NC \pi^0$ → Use of the cosmic ray tagger (CRT) in the $1e0p0\pi$ selection

V. CC Cosmics Data V. CC Cosmics Data Total predicted. LEE signal ___ LEE signal v other Total predicted constrained model 1 onstrained model 1 v with π^{0} ν with π^{1} Uncertainty Uncertainty 25 30 Runs 1-5, $1e0p0\pi$ selection Runs 1-5, 1eNp0π selection MicroBooNE preliminary, 1.11 × 10²¹ POT MicroBooNE preliminary, 1.11 × 10²¹ POT 20 25 20 1eNp0π 1e0p0π Events Events 15 10 10 5 5 0.5 1.0 1.5 2.0 0.5 1.0 15 2.0 Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV)

Data is consistent with nominal *v* interaction model with p-values ranging from 5.2% - 71.7% across both signal channels and all kinematic variables

Excludes the ν_e interpretation of the MiniBooNE LEE at \geq 99% CL in all kinematic variables

MICROBOONE-NOTE-1127-PUB

The MiniBooNE LEE: Single Photon Final States

$\frac{\text{Neutral-Current Delta radiative decay}}{\text{NC } \Delta \rightarrow \text{N}_{2}}$

Final States: $1\gamma Np$ and $1\gamma 0p$

MICROBOONE-NOTE-1126-PUB

Coherent single photon search

$$\nu(\overline{\nu}) + \operatorname{Ar}_{gs} \to \nu(\overline{\nu}) + \operatorname{Ar}_{gs} + \gamma$$

First search of its kind!

Further Anomaly Exploration and BSM Searches

3+1 Oscillation Measurement

Utilizes BNB and NuMI beam data, each with a distinct v_µ / v_e ratio to mitigate degeneracy in oscillation parameters

Dark Sector e⁺e⁻ Final States

 Sufficiently overlapping or asymmetric e⁺e⁻ pairs could match the MiniBooNE signal

95% CLs sensitivity for broad analysis with heavy and light Z'

MICROBOONE-NOTE-1124-PUB

MicroBooNE Physics Goals: Cross Sections

Detector Physics & Calibrations

> Investigating the MiniBooNE Low Energy Excess and other Beyond the Standard Model Physics

> > Neutrino-Argon Cross Sections

Neutrino Interaction Cross Sections

 \rightarrow MicroBooNE has collected O(500k) neutrino-Argon interactions in 5 years of data taking, the largest *v*-Ar dataset in the world, paving the way in *v*-Ar measurements

→ MicroBooNE can accurately measure energy reconstruction for lepton and hadron kinematics

Kate Pletcher | New Perspectives 2024

Types of cross section measurements:

uBooNE

MICHIGAN STATE

Cross Sections: Hadronic Modeling

MICHIGAN STATE UNIVERSIT

First Differential Cross Section Measurements of π⁰ Production

MICHIGAN STATE

Summary

- MicroBooNE is a liquid argon time projection chamber neutrino experiment at Fermilab, part of the SBN program
- ★ It currently has the most neutrino-Argon interaction data in the world!
- ★ We are a very active collaboration, paving the way for neutrino-Argon cross section measurements, investigating the MiniBooNE LEE, pioneering LArTPC detector physics studies, and developing novel analysis methods

Thank you!

MicroBooNE Collaboration Meeting at Michigan State University, May '24

Backup Slides

LSND and MiniBooNE Anomalies

Liquid Scintillator Neutrino Detector (LSND)

- 1993-1998: LSND takes data at Los Alamos National Laboratory
- 2001: Reported excess of anti- $\nu_e p \rightarrow e^+n$ events at 3.8 σ , experimental evidence for anti- $\nu_\mu^e \rightarrow anti-\nu_e$ oscillation with $\Delta m^2 \sim 1 \text{ eV}^2$ scaling
- This Δm^2 limit, when considered alongside much smaller Δm^2 limits from other experiments, disfavors the three-neutrino mass eigenstate model

- MiniBooNE (Mini Booster Neutrino Experiment)
 2002-2017: Mineral oil Cherenkov detector takes data at FNAL, measuring v_{e} and anti- v_{e} appearance 2009: Observed excess of electron-like events in their low energy
 - region at 4.8o, known as the Low Energy Excess (LEE)
 - Predicted to be produced by
 - Electron events \cap
 - Photon events 0

MiniBooNE cannot distinguish between electrons and photons as final state particles in its detector...but MicroBooNE can!

The MiniBooNE LEE: Electron-like Final States (2022 Results)

New Results: Semi-Inclusive Search for Pionless v_{e} Events

MICHIGAN STATE UNIVERSITY

Kate Pletcher | New Perspectives 2024

MICROBOONE-NOTE-1127-PUB

The MiniBooNE LEE Anomaly: e⁺e⁻ Pair Searches, Detailed

Searches for dark sector e⁺e⁻ pairs

 \rightarrow Sufficiently overlapping or asymmetric e⁺e⁻ pairs could match the MiniBooNE signal

Further Anomaly Exploration and Other BSM Searches

3+1 Oscillation Measurement

- > Utilizes BNB and NuMI beam data, each with a distinct v_{μ} / v_{e} ratio to mitigate degeneracy in oscillation parameters
- Adding NuMI data makes this analysis sensitive to the LSND allowed region

MICROBOONE-NOTE-1132-PUB

Constraining dark sector e⁺e⁻ solutions to the MiniBooNE LEE

- Sufficiently overlapping or asymmetric e⁺e⁻ pairs could match the MiniBooNE signal
- Sensitivity results for two approaches:
 - Broad analysis with heavy and light dark gauge bosons with one (3+1) or two (3+2) heavy sterile neutrinos
 - Focused analysis with a light dark gauge boson

MICROBOONE-NOTE-1124-PUB

95% CLs sensitivity for broad analysis with heavy and light Z'

Astro Particle and Exotics Searches

- ★ Kaons decaying at rest (KDARs) in NuMI absorber could produce HPS/HNLs that reach the MicroBooNE detector
- * $π^0$ or η meson decays could produce dark matter particles in the target

- ★ Higgs Portal Scalars (HPS)
 - Phys. Rev. Lett. 127 (2021) 15, 151803
 - Dark Tridents

*

Phys. Rev. Lett. 132, 241801

3+1 Oscillation Measurement, Detailed

MicroBooNE utilizes BNB and NuMI data to perform a light sterile neutrino search \rightarrow 3 active, 1 sterile (3+1) neutrino framework

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \cdot \sin^2 2\theta_{\alpha\beta} \cdot \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

 $v_{\mu} \rightarrow v_{e}$ appearance oscillations cancelling with v_{e} disappearance leads to degeneracy in oscillation parameters

BNB: 99.5% v_{μ} / 0.5% v_{e} NuMI: 95% v_{μ} / 5% v_{e} The different v_{μ} / v_{e} ratios mitigate this degeneracy

Kate Pletcher | New Perspectives 2024

Cross Sections: Novel Identification Techniques

