Constraining Systematics for Future Sterile Neutrino Analysis at NOvA Experiment

New Perspective Meeting

Shivam

July 5, 2024

Indian Institute of Technology, Guwahati

- 1. Neutrino Oscillations
- 2. NOvA Experiment
- 3. Sterile Neutrino
- 4. Motivation: Constraining Systematics
- 5. Results and Conclusion

Neutrino Oscillations

Neutrino Oscillations

- Neutrinos produced in one flavor state change its flavor during its travel across the distance.
- ν_l , flavor eigenstate which is a superposition of ν_i , mass eigenstates.

Neutrino Oscillations

- In most of the long baseline experiments, we use the ν_{μ} disappearance or ν_e appearance channels to study the neutrino oscillation parameters.
- As an example, in two flavor approximation ν_{μ} disappearance probability is defined as:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \left(\sin^2 2\theta_{23}\right) \sin^2 \left(\frac{\Delta m_{23}^2}{E_{\nu}}\right)$$

- mixing angle determines the magnitude of oscillations.
- mass splitting determines the frequency of oscillations.

Is Three Flavor Picture Enough?

• Several anomalous results observed by various experiments could suggest a possible explanation beyond the active three-flavor oscillations.

• LSND observed a 3σ excess above the expected beam background.

- One possible solution is adding an extra neutrino flavor.
- Any additional neutrino flavor should not interact with the known forces (not even through weak interactions).
- More than one sterile neutrino is possible, but the minimal solution uses the 3+1 model.
- This leads to adding an extra dimension to the PMNS mixing matrix, also leading to an additional oscillation frequency Δm^2_{41} .

NOvA Experiment

NOvA Experiment

NuMI Beam

- 120 GeV protons from the Fermilab Main Injector strike the target to produce secondary particles.
- Two focussing horns focus the secondary particles that decay into the decay tunnel to produce the $\nu(\bar{\nu})$ beam.

- NOvA is a long baseline experiment with two functionally identical liquid scintillator detectors.
- The Near Detector is placed 100 m underground at 1 km from the source, and the far detector at 810 km on the surface from the near detector.

Sterile Neutrino

Sterile Neutrino at NOvA: Neutral Currents

• Neutral Current Disappearance gives a clean measurement of 3+1 oscillations because of their flavor independency.

- Oscillations begin to manifest at ND for $\Delta m_{41}^2 > 0.5 \text{eV}^2$.
- Highlighted text is the short baseline approximation.

$$P(\nu_{\mu} \rightarrow \nu_{5}) \approx \frac{1 - \cos^{4}\theta_{14}\cos^{2}\theta_{34}\sin^{2}2\theta_{24}\sin^{2}\Delta_{41}}{-\sin^{2}\theta_{34}}\sin^{2}2\theta_{23}\sin^{2}\Delta_{31}$$
$$+ \frac{1}{2}\sin\delta_{24}\sin\theta_{24}\sin2\theta_{23}\sin\Delta_{31}$$

• Sensitivity to $\sin^2 \theta_{34}$ at FD NC can be measured independent of $\sin^2 \theta_{24}$.

Sterile Neutrino at NOvA: u_{μ} disappearance

• Any additional ν_{μ} disappearance above the expected 3-flavor oscillation can be manifested as sterile neutrino.

- Highlighted text is the FD oscillation intermixed with the 3-flavor oscillations.
- Charged Current ν_{μ} is sensitive to the θ_{24} at both ND and FD.

Motivation: Constraining Systematics

Sterile Neutrino at NOvA

- NOvA 2022 Sterile Neutrino mode results showing a leading limit on $\sin^2 \theta_{24}$ at high Δm_{41}^2 .
- On one hand, the low Δm_{41}^2 region is driven by the FD data and is statistically limited.
- On the other hand, at high Δm_{41}^2 region where sensitivity is driven by ND is systematically limited.

Figure 2: NOvA's 90 % confidence limits in (a) $\sin^2 \theta_{24}$ vs Δm_{41}^2 space with other allowed regions and exclusion contours.

Sterile Neutrino at NOvA

Figure 3: Sensitivity Contour (at 90% CL) for $\sin^2 \theta_{24}$ vs Δm_{41}^2

• We are taking more and more data, which improves the statistics, but with more statistics, we also need to deal with the systematics.

- The figure on the left shows the Sensitivity Contour (at 90% CL) for $\sin^2 \theta_{24}$ for different systematic groups.
- We can see that the cross-section and flux systematics are the dominant ones, and the future analysis includes constraining the systematics.

We used a new approach to implement the ND NC sample, where instead of using the sample as a whole, we divided it into subsamples based on the number of prongs associated with the event.

- Single prong Sample : the events with single prong are mostly enriched with the SIS, QE and dominated by Res.
- 2 and 3 Prong Sample : This sample is highly enriched in Res but has a contribution from SIS interaction as well.
- 4 Prong Sample : DIS starts appearing, but this region is dominated by SIS events.
- >4 Prong Sample : Once we have more than 4 prongs, the DIS interaction highly dominates the events.

Results and Conclusion

Results and Conclusion

- The distribution in light blue shows the uncertainty at FD without any constraint from the ND.
- Dark Blue distribution represents the FD uncertainty knowing the information about the ND without splitting.
- Pink distribution represents the FD uncertainty with additional information with ND splitting.

- Conditional uncertainty distributions show better constraints on the cross-section uncertainties.
- This split sample approach will allow us to disentangle the signal and systematic effects and help improve the sensitivity at higher Δm^2_{41} region.
- More studies are underway, including zero horn current and ν -on-e studies to improve the flux systematic uncertainties.

NOvA Collaboration

Thank You

Backup Slides

Fraction with each prong:: True NC only (ND NC CVN >0.1)

pngs	Coh	DIS	SIS	QE	Res
1	0.029(0.071)	0.055 (0.046)	0.236 (0.254)	0.147 (0.091)	0.531 (0.535)
2	0.016 (0.038)	0.051 (0.051)	0.315(0.326)	0.039 (0.022)	0.577 (0.561)
3	0.005(0.011)	0.103(0.115)	0.384(0.393)	0.022(0.011)	0.484(0.467)
4	0.001(0.004)	0.220(0.247)	0.414(0.418)	0.013(0.006)	0.350(0.322)
5	0 (0.001)	0.382 (0.400)	0.379 (0.387)	0.006 (0.004)	0.230 (0.206)
6	0 (0.001)	0.527 (0.534)	0.322 (0.328)	0.001 (0.001)	0.146 (0.133)
7	0 (0)	0.644 (0.641)	0.261 (0.278)	0 (0.001)	0.091 (0.077)
8	0	0.725 (0.727)	0.198 (0.278)	0 (0)	0.075 (0.066)
9	0	0.751 (0.763)	0.190 (0.210)	0	0.058 (0.026)

Table 1: Fraction of each interaction with # of prongs for CVN>0.1

- The table shows the different interaction fractions with loose CVN scores.
- Losening the CVN score reduces the fraction of QE events and increases the DIS and Res fractions.

pngs	Coh	DIS	SIS	QE	Res
1	0.056 (0.151)	0.048 (0.054)	0.149 (0.172)	0.280(0.147)	0.465(0.473)
2	0.048 (0.113)	0.058 (0.039)	0.206(0.216)	0.046 (0.024)	0.640(0.605)
3	0.018 (0.044)	0.150 (0.123)	0.219 (0.256)	0.030 (0.014)	0.580 (0.559)
4	0.008 (0.004)	0.403 (0.247)	0.206 (0.418)	0.019 (0.006)	0.362 (0.322)
5	0.003 (0.001)	0.655 (0.400)	0.155 (0.987)	0.010 (0.004)	0.175 (0.206)
6	0.000 (0)	0.792 (0.534)	0.122 (0.328)	0.001 (0.001)	0.081 (0.133)
7	0 (0)	0.830 (0.641)	0.114 (0.278)	0 (0.001)	0.054 (0.077)
8	0 (0)	0.841 (0.727)	0.110 (0.205)	0 (0)	0.047 (0.066)
9	0 (0)	0.879 (0.763)	0.051 (0.210)	0 (0)	0.069 (0.026)

Table 2: Fraction of each interaction with # of prongs for CVN>0.98

- To see the different interactions, DIS has been split into two categories (DIS and SIS) based on the Q^2 and W value.
- It appears that, beyond five prongs, most events fall into the DIS category.