DUNE: Overview

Sungbin Oh, on behalf of the DUNE collaboration Fermi National Accelerator Laboratory

57th Fermilab Users Meeting 10 July, 2024

• Understanding the universe?

- Understanding the universe?
 - The beginning and early evolution

Image by The Stephen Hawking Centre for Theoretical Cosmology

Today Life on eartl Acceleration Dark energy dominates Solar system forms **Star formation peak** Galaxy formation era **Earliest visible galaxies**

Recombination Atoms form Relic radiation decouples (CMB

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created – D, He, Li **Nuclear fusion begins**

Quark-hadron transition Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear

forces first differentiate Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate

Inflation Quantum gravity wall Spacetime description breaks down

- Understanding the universe?
 - The beginning and early evolution

Image by The Stephen Hawking Centre for Theoretical Cosmology

Today Life on eartl Acceleration Dark energy dominates Solar system forms **Star formation peak** Galaxy formation era **Earliest visible galaxies**

Recombination Atoms form Relic radiation decouples (CMB

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created – D, He, Li **Nuclear fusion begins**

Quark-hadron transition Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate

Inflation Quantum gravity wall Spacetime description breaks down

14 billion years **11 billion years** 700 million vears 400,000 years 5,000 years — 3 minutes 0 0.01 ns

Germilab

- Understanding the universe?
 - The beginning and early evolution

Image by The Stephen Hawking Centre for Theoretical Cosmology

Recombination Atoms form Relic radiation decouples (CMB

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created – D, He, Li **Nuclear fusion begins**

Quark-hadron transition Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate

Inflation Quantum gravity wall Spacetime description breaks down

- Understanding the universe?
 - The beginning and early evolution

- Understanding the universe?

Image by The Stephen Hawking

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

+ beyond?

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

+ beyond?

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

0	$s_{13}e^{-i\delta}$]	$\left[\begin{array}{c} c_{12} \end{array} ight.$	s_{12}	0	$\int e^{ilpha_1/2}$	0	0	
1	0	$ -s_{12} $	c_{12}	0	0	$e^{ilpha_2/2}$	0	$c_{ii} = \cos \theta_{ii}$
0	c_{13}]	L 0	0	1		0	1 ,	$s_{ij} = \sin \theta_{ij}$

L : traveled distance

: energy
$$m^2 = m^2 - m^2$$

Understanding the universe?

14

- The beginning and early evolution
- Current state : ingredients and their properties/interactions

Sungbin Oh I 57th Fermilab Users Meeting, 2024

0	$s_{13}e^{-i\delta}$]	$\int c_{12}$	$_{2}$ s_{12}	0]	$\int e^{ilpha_1/2}$	0	0]	
1	0	-s	$_{12}$ c_{12}	0	0	$e^{ilpha_2/2}$	0	$c_{ii} = \cos \theta_{ii}$
0	c_{13} _		0	1		0	$1 \rfloor$,	$s_{ij} = \sin \theta_{ij}$

L : traveled distance

: energy
$$m_{ii}^2 = m_i^2 - m_i^2$$

New symmetries?

Known Known - Better precision with DUNE Unknown - DUNE's goal Unknown - Future Experiments

Germilab

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

$$A^{(lphaeta)}_{\mathsf{CP}} = P(
u_lpha o
u_eta) - P(ar
u_lpha o ar
u_eta) = 4$$

- Understanding the universe?
 - The beginning and early evolution
 - Current state : ingredients and their properties/interactions

The DUNE Experiment

- Three central components
 - (1) High intensity neutrino source MWs class proton Accelerator at Fermilab
 - (2) Far detector situated 1.5 km underground at the Sanford Underground Research Facility (SURF) (3) **Near detector** just downstream of the neutrino source
- Long-Baseline Neutrino Facility (LBNF) project
 - Provides the beamline and the civil construction for the DUNE experiment

The DUNE Collaboration

- ~ 1400 scientists and engineers
- International collaboration
 - Total 207 institutions at Africa, Asia, Europe, North and South America as of 5th July 2024

DUNE Collaboration Meeting, May 2024, Fermilab

(1) High intensity neutrino source

• Beam protons on target (POT)!

- Very high flux with wide energy spectrum
- Proton Improvement Plan-II (PIP-II) is ongoing 1.2 MW
- The further improvement plan for beyond 2 MW is also recommended by 2023 P5 report!

‡Fermilab

Eur.Phys.J.C 80 (2020) 10, 978

(1) High intensity neutrino source

Beam protons on target (POT)!

- Very high flux with wide energy spectrum
- Proton Improvement Plan-II (PIP-II) is ongoing 1.2 MW
- The further improvement plan for beyond 2 MW is also recommended by 2023 P5 report!

Germilab

Eur.Phys.J.C 80 (2020) 10, 978

(2) Far Detector (FD)

- Liquid argon time projection chambers (LArTPCs)
 - Excellent interaction imaging performance in position and energy resolution

(2) Far Detector (FD)

- Position in electron-drifting direction is determined by reference time of each event (t_0)
 - The neutrino beam timing
 - Photon detection system (PDS) using a light trap technology, X-ARAPUCA
- PDS
 - Essential for nucleon decay searches and solar neutrino studies
 - Provide complimentary calorimetric information
 - 1 μ s timing resolution \rightarrow 1 mm position resolution for 10 MeV supernova burst neutrinos
 - Goal is better than 100 ns

(2) Far Detector (FD)

- Four 17-kt LArTPC detector modules
- Situated 1.5 km underground
- Design is fixed for DUNE Phase I FDs
 - Horizontal drift (HD) JINST 15 T08010 (2020)
 - Vertical drift (VD)

A (anode) C (cathode)

HD: 4 drift volumes, wire readout

<u>arXiv:2312.03130</u>

VD: 2 drift volumes, perforated readout strips

Sungbin Oh I 57th Fermilab Users Meeting, 2024

14 m

Multiple versions of field cage modules

(2) Far Detector (FD) - Vertical Drift (VD)

- Charge readout plane (CRT)
- Photon detectors (X-ARAPUCAs) on cathode plane and on vertical cryostat membrane

2 x 6.5 m vertical drift 3 m x 3.4 m CRPs with superstructure CRP detail with readout planes and adapter boards Perforated readout strips Photon Detector ~~~

‡Fermilab

(2) Far Detector (FD) - Site

- Sanford Underground Research Facility (SURF), SD
- It was the Homestake gold mine
- Hosting underground experiments, i.e. LUX-ZEPLIN, MAJORANA demonstrator
- ~ 1300 km from Fermilab

26

Hometown of neutrino oscillation - Solar neutrino problem by Davis, The Nobel prize in physics 2002

(2) Far Detector (FD) - Site

- areas

(2) Far Detector (FD) - Site

• Underground excavation is completed in February 2024!

- Focus is moving to construction for buildings and infrastructure
- Cryostat installation begins in 2025

(2) Far Detector (FD) - Prototyping

- First horizontal drift prototype at CERN Neutrino Platform was successful (0.77-kt LAr, 2018 2020)
 - Meets or surpasses the specifications set for the FD-HD
 - Good dE/dx reconstruction performance for both Bragg peak and MIP region
 - Low energy electron study using Michele electrons : $\sigma(E)/E \sim 25\%$ at 50 MeV
 - Hadron-argon cross section measurements
 - Data with a tagged and momentum analyzed incident beam

JINST 15 (2020) 12, P12004

Phys.Rev.D 107 (2023) 9, 092012

π^+ - Ar inclusive cross section (qm) MC sig+bkg Bkg MC 800 Data 600 400 Data stat • Data stat ⊕ sys 200 Geant v4 10 6 p01c 200 400 600 800 Pion Kinetic Energy (MeV)

‡Fermilab

(2) Far Detector (FD) - Prototyping

- Second run is ongoing this year
- **ProtoDUNE-HD**

- **ProtoDUNE-VD**
 - LAr will be transferred in October to start run in early 2025

(3) Near Detector (ND)

- The ND hall will be located 574 m downstream from the target
- Movable LArTPC system
 - ND-LAr : 7×5 array of $1 \times 1 \times 3$ m³ LArTPCs with pixel readout
 - Muon spectrometer : magnetized steel range stack for muon charge and momentum measurements from ν_{μ} CC interactions inside the ND-LAr

(*E*_v) 10⁻⁸ (/cm² /GeV /POT)

 $\Phi_{v_{\mu}}^{\mathsf{NI}}$

- Move up to 28.5 m off-axis
- SAND : on-axis magnetized neutrino detector

Sungbin Oh I 57th Fermilab Users Meeting, 2024

Muon Spectrometer

(3) Near Detector (ND) - Prototyping

- The 2x2 demonstrator: demonstration of ND-LAr design with 4 modules at $\sim 60\%$ scale
 - Together with reconfigured Miner ν a modules
- Detector installation, LAr fill, and commissioning complete
- Currently operating with high LAr purity and 500 V/cm nominal electric field

Sungbin Oh I 57th Fermilab Users Meeting, 2024

DUNE Phase-I in 2023 P5 Report

Introduced only DUNE Phase-I status/plan so far

Recommendation 1: As the highest priority independent of the budget scenarios, complete construction projects and support operations of ongoing experiments and research to enable maximum science. a. HL₋LHC;

b. The first phase of DUNE and PIP-II to open an era of precision neutrino measurements that include the determination of the mass ordering among neutrinos. Knowledge of this fundamental property is a crucial input to cosmology and nuclear science (elucidate the mysteries of neutrinos, section 3.1).

DUNE Phase-II Upgrade

- (1) High intensity neutrino source
 - Beam intensity upgrade to beyond 2 MW from PIP-II's 1.2 MW
 - ACE-MIRT : 2 MW without new accelerator construction
 - ACE-BR : 2.4 MW with booster replacement
- (2) Far detector
 - Two more 17kt LArTPCs baseline design is VD
- (3) Near detector
 - More capable near detector (MCND) : high pressure gas argon TPC (ND-GAr) with ECAL under B-field
 - Low energy threshold with better energy resolution and PID performance
- Most of these plans were re-envisioned in 2023 P5 report
 - FD4 : "yes" in more favorable budget scenario, and "R&D only" in other cases
 - ACE-MIRT : "R&D only" for less favorable budget scenario

ACE-BR : "Conditionally yes after review" in more favorable budget scenario, and "R&D only" in other cases

DUNE Physics Sensitivity

Beam exposure scenario is based on the P5 baseline

DUNE Physics Sensitivity - Mass Ordering

$$P_{\nu_{\mu} \to \nu_{e}, (\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx 4 \sin^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1-A)}{(1-A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A \Delta}{A^{2}} + 8 \alpha J_{\rm CP}^{\max} \cos(\Delta \pm \delta_{\rm CP}) \frac{\sin \Delta A}{A} \frac{\sin \Delta (1-A)}{1-A}$$

Sungbin Oh I 57th Fermilab Users Meeting, 2024

Energy spectrum of electron neutrino appearance ($\nu_{\mu} \rightarrow \nu_{e}$) events constrains the mass ordering

$$\begin{split} J_{\rm CP}^{\rm max} &= \cos\theta_{12}\sin\theta_{12}\cos\theta_{23}\sin\theta_{23}\cos^2\theta_{13}\sin\theta_{13}\,,\\ \alpha &\equiv \Delta m_{21}^2/\Delta m_{31}^2\\ \Delta &\equiv \frac{\Delta m_{31}^2 L}{4E_\nu}\,, \quad A \equiv \frac{2E_\nu V}{\Delta m_{31}^2}\,, \end{split}$$

Fermilab
DUNE Physics Sensitivity - δ_{CP}

$$\begin{aligned} P_{\nu_{\mu} \to \nu_{e}, (\bar{\nu}_{\mu} \to \bar{\nu}_{e})} &\approx 4 \, \sin^{2} \theta_{13} \, \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1-A)}{(1-A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \, \cos^{2} \theta_{23} \frac{\sin^{2} A \Delta}{A^{2}} \\ &+ \frac{8 \, \alpha \, J_{\rm CP}^{\max} \cos(\Delta \pm \delta_{\rm CP})}{A} \frac{\sin \Delta A}{A} \, \frac{\sin \Delta (1-A)}{1-A} \end{aligned}$$

Sungbin Oh I 57th Fermilab Users Meeting, 2024

Energy spectrum of electron neutrino appearance ($\nu_{\mu} \rightarrow \nu_{e}$) events constrains the mass ordering

$$\begin{split} J_{\rm CP}^{\rm max} &= \cos\theta_{12}\sin\theta_{12}\cos\theta_{23}\sin\theta_{23}\cos^2\theta_{13}\sin\theta_{13}\,,\\ \alpha &\equiv \Delta m_{21}^2/\Delta m_{31}^2\\ \overline{\Delta} &\equiv \frac{\Delta m_{21}^2L}{4E_\nu}\,, \quad A \equiv \frac{2E_\nu V}{\Delta m_{31}^2}\,, \end{split}$$

‡Fermilab

DUNE Physics Sensitivity - Mass Ordering & $\delta_{\rm CP}$

- 336-kt-MW-years ~ 6.5 years
- 624 kt-MW-years ~ 10.5 years

DUNE Physics Sensitivity - Core-collapse Supernova

- Unique chance to understand
 - Neutrino properties such as the mass ordering
 - Supernova neutrino burst spectrum modeling

Sungbin Oh I 57th Fermilab Users Meeting, 2024

DUNE will observe ~ thousands of neutrino interactions from next Galactic core-collapse supernova

DUNE Physics Sensitivity - Core-collapse Supernova

- Unique chance to understand
 - Neutrino properties such as the mass ordering
 - Supernova neutrino burst spectrum modeling

Supernova neutrino burst flux parameterization with α and $\langle E_{\nu} \rangle$

$$\frac{dN_{\nu}}{dE_{\nu}}(E_{\nu}) = A\left(\frac{E_{\nu}}{\langle E_{\nu}\rangle}\right)^{\alpha} \exp\left[-(\alpha+1)\frac{E_{\nu}}{\langle E_{\nu}\rangle}\right],$$

$$A = rac{(lpha+1)^{lpha+1}}{\langle E_{
u}
angle \Gamma(lpha+1)}$$

Astrophys.J. 590 (2003) 971-991

DUNE will observe ~ thousands of neutrino interactions from next Galactic core-collapse supernova

Phys. Rev. D 97, 023019

DUNE Physics Sensitivity - Core-collapse Supernova Pointing

- DUNE can detect ν_{e} from supernova neutrino bursts
- **Dominant channels**
 - $\nu_e CC (\nu_e + Ar \rightarrow e^- + {}^{40}K^*) : \sim 3k$ events for supernova at 10 kpc
 - eES ($\nu_e + e^- \rightarrow \nu_e + e^-$) : ~ 0.3k events for supernova at 10 kpc
- ~ 5° pointing resolution with $P(\nu_e CC \rightarrow eES) = 4\%$ at 10 kpc

41 July 10 Sungbin Oh I 57th Fermilab Users Meeting, 2024

Germilab

DUNE Physics Sensitivity - Solar Neutrinos

- DUNE has excellent sensitivity for solar neutrinos with energy above 10 MeV
- Understanding better the pp chain of the Sun
 - Discovering sensitivity for ${}^{3}\text{He} + p \rightarrow {}^{4}\text{He} + e^{+} + \nu_{e}$ (hep)
- Improvement upon existing solar oscillation measurements
 - Using day-night asymmetry from the Earth matter effect
 - Current analysis assumes dedicated trigger and flash matching

42 July 10 Sungbin Oh I 57th Fermilab Users Meeting, 2024

DUNE Physics Sensitivity - Baryon Number Violations

- Search for baryon number violation is important
 - Matter dominance of the universe baryogenesis
 - Many Grand Unified Theories (GUTs) predict proton decays
 - Baryon number conservation is an accidental symmetry in the SM
- DUNE can record all particles from $p \rightarrow K^+ \bar{\nu}$ decay
- Many pions signature of $n \rightarrow \bar{n}$ transition also can be detected

-	-	Lı		
ج .	-		_	
	•		_	
-		-	_	
			_	
			_	
			_	
-	-		-	
		' '		

Germilab

DUNE Physics Sensitivity - Various BSM Searches

- Wide neutrino energy spectrum, ND, and FD
 - Broad L/E \rightarrow sensitivity for oscillations beyond the 3-flavors
- Long baseline 1300 km
- High intensity proton beam on target excellent sensitivity to exotic particles
- And more and more...

Sungbin Oh I 57th Fermilab Users Meeting, 2024

Neutral current non-standard neutrino interactions (NC-NSI)'s contribution on top of the matter effect

‡Fermilab

Summary

- The DUNE science program can improve our understanding of the universe
 - Early evolution : baryon number violation, leptonic CP phase, and core-collapse supernoval
 - Neutrino properties : more precise PMNS parameters, mass ordering, and leptonic CP phase
- DUNE is having great progress in all three central components
 - Neutrino beam facility upgrade
 - Far detector construction and prototyping
 - Near detector design and prototyping
- In the light of the P5 report
 - Completing DUNE phase-I is highest priority
- DUNE's physics sensitivity promises to deliver multiple discoveries!

Phase-II is re-envisioned : ACE-MIRT, FD3, and MCND in next decade, and R&D for FD4 and ACE-BR

DUNE Collaboration Meeting, May, 2024, Fermilab

46 July 10

Sungbin Oh I 57th Fermilab Users Meeting, 2024

ROBERT RATHBUN WILSON HALL

Back Up

Chapter 2. The Recommended Particle Physics Program - Overview

. . .

DUNE will comprehensively explore the quantum realm of neutrinos, potentially un-earthing new physics beyond current theoretical frameworks. Early implementation of the accelerator upgrade ACE-MIRT advances the DUNE program significantly, hastening the definite discovery of the neutrino mass ordering. This upgrade in conjunction with the deployment of the third far detector and a more capable near detector are indispensable components of the re-envisioned next phase of DUNE. R&D for an advanced fourth detector enables the expansion of the physics program of LBNF. These substantial initiatives find synergy with smaller-scale experiments to elucidate the mysteries of neutrinos.

. . .

2.2 Recommendations

a. HL_LHC;

b. The first phase of DUNE and PIP-II to open an era of precision neutrino measurements that include the determination of the mass ordering among neutrinos. Knowledge of this fundamental property is a crucial input to cosmology and nuclear science (elu- cidate the mysteries of neutrinos, section 3.1).

C. ...

Recommendation 1: As the highest priority independent of the budget scenarios, complete construction projects and support operations of ongoing experiments and research to enable maximum science.

2.2 Recommendations

cosmic past and future.

a. CMB-S4;

b. A re-envisioned second phase of DUNE with an early implementation of an enhanced 2.1 MW beam—ACE-MIRT—a third far detector, and an upgraded near-detector complex as the definitive long-baseline neutrino oscillation experiment of its kind (section 3.1).

C....

Recommendation 2: Construct a portfolio of major projects that collectively study nearly all fundamental constituents of our universe and their interactions, as well as how those interactions determine both the

2.2 Recommendations

Recommendation 4: Invest in a comprehensive initiative to develop the resourc- es—theoretical, computational, and technological – essential to realizing our 20-year strategic vision. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

a.

b.

С.

d.

e. Conduct R&D efforts to define and enable new projects in the next decade, including detectors for an e+e- Higgs factory and 10 TeV pCM collider, Spec-S5, DUNE FD4, Mu2e-II, Advanced Muon Facility, and line intensity mapping (sections 3.1, 3.2, 4.2, 5.1, 5.2, and 6.3).

2.6 Adapting to Alternative Budget Scenarios

2.6.1 – Less Favorable Budget Scenario

Recommendation 1 as our highest priority. The agencies should launch the same major initiatives as outlined in Recommendation 2, some of them with significantly reduced scope:

a. CMB-S4;

b. DUNE Third Far Detector (FD3), but defer ACE-MIRT and the More Capable Near Detector (MCND). Infrastructure required to accommodate international contributions remains a priority.

. . .

2.6.2 – More Favorable Budget Scenario

c. Medium Projects

i.;

ii. Initiate construction of an advanced fourth far detector (FD4) for DUNE that will expand its neutrino oscillation physics and broaden its science program.

Chapter 2 Summary Plot

Index: Y: Ye

Delayed: Red

† Recommer

Can be con

US Construc

\$100-400N

IceCube-Gei

G3 Dark Ma

DUNE FD3

Test Facilities

ACE-MIRT

DUNE FD4

G3 Dark Ma

Mu2e-II

srEDM

\$60-100M

SURF Expa

DUNE MCN

MATHUSLA

FPF Trio

\$1-3B

Offshore Hig

ACE-BR

Sungbin Oh I 57th Fermilab Users Meeting, 2024 55 July 10

Figure 2 – Construction in Various Budget Scenarios

es N: No R&D:	Recommend R&D	O only C: Cond	litional yes based	on revie	ew P:	Primary	S: Se	econdai	Ъ
nd infrastructure s	support to enable of ASTAE with rec	international con	tributions	Neu	_	_	ĒC	Evi	In
tion Cost	Scenarios			itrinos	Higgs 3oson	Dark Matter	osmic olution	Direct dence	antum
	Less	Baseline	More			Science	Drivers	6	
N									
en2	Y	Y	Y	Р		S			
atter 1	Y	Y	Y	S		Р			
	Y	Y	Y	Р				S	S
& Demonstrator(s)	С	С	С		Р	Р		Р	Ρ
	R&D	Y	Y	Р					
	R&D	R&D	Y	Р				S	S
atter 2	Ν	N	Y	S		Р			
	R&D	R&D	R&D						Ρ
	Ν	N	N						Ρ
nsion	N	Y	Y	Р		Р			

insion	Ν	Y	Y	Р	Р		
ID	N†	Y	Y	Р		S	S
N	N#	N#	N#		Р	Р	
	N#	N#	N#	Р	Р	Р	

ggs factory	Delayed	Y	Y		Р	S	Р	Ρ
	R&D	R&D	С	Р			Р	Ρ

‡Fermilab

Chapter 3 - Decipher the Quantum Realm

3.1 Elucidate the Mysteries of Neutrinos

Recommendation 2, some of them with significantly reduced scope:

a. CMB₋S4;

b. DUNE Third Far Detector (FD3), but defer ACE-MIRT and the More Capable Near Detector (MCND). Infrastructure required to accommodate international contributions remains a priority.

. . .

2.6.2 – More Favorable Budget Scenario

c. Medium Projects

i.;

. . .

ii. Initiate construction of an advanced fourth far detector (FD4) for DUNE that will expand its neutrino oscillation physics and broaden its science program.

56 July 10 Sungbin Oh I 57th Fermilab Users Meeting, 2024

Recommendation 1 as our highest priority. The agencies should launch the same major initiatives as outlined in

Neutrino Oscillations

Three neutrino oscillation and CP asymmetry

$$|\,
u_j(t)\,
angle=e^{-i\,igl(\,E_jt\,-\,ec p_j\cdotec x\,igr)}\,|\,
u_j(0)\,
angle$$

Ultrarelativistic limit

58

$$|\,
u_j(L)\,
angle=e^{-i\left(rac{m_j^2\,L}{2\,E}
ight)}\,|\,
u_j(0)\,
angle$$

$$egin{aligned} P_{lpha o eta} &= \delta_{lphaeta} - 4 \, \sum_{j>k} \, \mathcal{R}_e \Big\{ \, U^*_{lpha j} \, U_{eta j} \, U_{lpha k} \, U^*_{eta k} \, \Big\} \, \sin^2 \! \left(rac{\Delta m_j^2}{4 R}
ight. \ &+ 2 \, \sum_{j>k} \, \mathcal{I}_m \Big\{ \, U^*_{lpha j} \, U_{eta j} \, U_{eta j} \, U_{lpha k} \, U^*_{eta k} \, \Big\} \, \sin \! \left(rac{\Delta m_j^2}{2 E}
ight. \end{aligned}$$

$$A_{\mathsf{CP}}^{(lphaeta)} = P(
u_lpha o
u_eta) - P(ar
u_lpha o ar
u_eta) = 4 \, \sum_{j>k} \, \mathcal{I}_m \Big\{ \, U^*_{lpha j} \, U_{eta j} \, U_{lpha k} \, U^*_{eta k} \, \Big\} \, \sin\!\left(\!rac{\Delta m^2_{jk} L}{2E}\!
ight)$$

July 10Sungbin Oh I 57th Fermilab Users Meeting, 2024

$$\left(\frac{\frac{2}{jk}L}{E}\right)$$

Neutrino Beam

60 July 10

Sungbin Oh I 57th Fermilab Users Meeting, 2024

ACE, + MIRT, +BR

Accelerator Complex Evolution (ACE) plan

Main Injector Ramp and Targets (MIRT)

- Reach 2 MW without new accelerator construction
- Main driving factor of higher intensity : faster main injector ramp rate
 - $\sim \times 2$ frequency of spills

Booster Replacement (BR)

Far Detector

FD Site Plan

category CD Milestone					12			E T	20	
CD Milestone	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	-				_					-
FSCF EXC										
SCF BSI										
DC	+	<u> </u>		-	-	_				-
C										
ISCF+B										
										1
										1
										1
D										
D										
D										
D										
D										
D										
D										1
)										
D										-

63 July 10

Sungbin Oh I 57th Fermilab Users Meeting, 2024

‡Fermilab

VD Production Plan

Catagony	20	024		2	025			20	026			2	027			2028
Category	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Milestones	PRRs c	omplete														
	(PRR	: productio	on readir	iess revie	ew)					Start FD	2 installati	on in cryo	stat 🔷			
															FD2	TCO close 🔷
Production							top in	terface car	ds							
										С	RP anode I	PCB produ	iction			
									top co	omposite fr	rame				Legen	d
									to	op CRP susp	ension	to framo	D	etector Comp etector Integ	oonent Cons ration & Ins	truction tallation
							to	p CRP trans	sport box			te name	N	lilestone		
									bottom	interface c	ards					
									Тор С	CRP produc	tion					
									to	op CRP cabl	es					
										bottom	CRP suppo	ort				
					В	ottom CRF	producti	on								
Installation												Top CRP	installati	on		
													Bottom	CRP installa	ation	
															close	tco

<u>arXiv:2312.03130</u>

APA Production Chain

Sungbin Oh I 57th Fermilab Users Meeting, 2024

VD Modules

Sungbin Oh I 57th Fermilab Users Meeting, 2024

2 x 6.5 m vertical drift

80 CRPs / Anode

HD Dimension

67 July 10

Sungbin Oh I 57th Fermilab Users Meeting, 2024

14 m

Multiple versions of field cage modules

ProtoDUNE

ProtoDUNE-HD Improvements

- Updated APA, CPA and cold electronics designs
- 4 APAs to match the field cage-cryostat distance of the FD module (ProtoDUNE-SP had 6 APAs)
- PDS with X-ARAPUCA technology

Low Energy Electron ID and Reco.

• Study using Michel electrons from muon decays

71 July 10 Sungbin Oh I 57th Fermilab Users Meeting, 2024

Phys.Rev.D 107 (2023) 9, 092012

Fermilab

Performance - Summary

- ProtoDUNE-SP meets or surpasses the specifications set for the DUNE far detector
 - Effectiveness of the single-phase DUNE far detector design
 - Execution of the fabrication, assembly, installation, commissioning, and operations phases

Detector parameter	ProtoDUNE-SP performance	DUNE specification	JINST 15 (2020)
Average drift electric field	500 V/cm	250 V/cm (min)	
		500 V/cm (nominal)	
LAr e-lifetime	> 20 ms	> 3 ms	
TPC+CE			
Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC	
Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)		
CE dead channels	0.2%	< 1%	
PDS light yield	1.9 photons/MeV	> 0.5 photons/MeV	
	(@ 3.3 m distance)	(@ cathode distance — 3.6 m)	
PDS time resolution	14 ns	< 100 ns	
			—

Near Detector

ND Plan

- Thus far:
 - Conceptual Design Report published in Sep 2021, Conceptual Design Review in July 2020
- Next step is to achieve Preliminary Design
 - Includes: preliminary Technical Design Report (PDR) and Preliminary Design Reviews of all subsystems by the LBNF/DUNE Review OFfice
- Goal: ready for installation when the Near Detector Hall is ready (second half of 2028)

2026			2027				2028	
1								
Gort G								
Rev								
	CD3 IPR		CD3 ESAAB					
	PRR, procurement plan		Procurem					
							ND Hall AUP	

Straw-tubes tracker (STT) as tracker GRAIN : active LAr target

2x2 Demonstrator

- 4 ND-LAr modules
- Reconfigured MINERvA
 - 44 modules w/total 76 scintillator planes
 - 12 upstream tracker modules (each is 2 scintillator planes)
 - 10 downstream tracker modules (each is 2 scintillator planes)
 - 10 downstream ECAL modules (each is 2 scintillator planes and 2 lead layers
 - 12 downstream HCAL modules (each is 1 scintillator plane and 1 steel plate

Jen Raaf's slides

DUNE Sensitivity

DUNE Phase-I in 2023 P5 Report

Introduced only DUNE Phase-I status/plan so far

Recommendation 1: As the highest priority independent of the budget scenarios, complete construction projects and support operations of ongoing experiments and research to enable maximum science. a. HL-LHC;

b. The first phase of DUNE and PIP-II to open an era of precision neutrino measurements that include the determination of the mass ordering among neutrinos. Knowledge of this fundamental property is a crucial input to cosmology and nuclear science (elucidate the mysteries of neutrinos, section 3.1).

C. ...

- Complete the first FD module installation and start science in 2029
- Second FD module, ND and neutrino beam will be ready around 2031-32

DUNE Physics Sensitivity - $\delta_{\rm CP}$

Expected number of events

	Expected Eve		
	Expected Eve	ints (5.5 years staged per mode)	
	u mode	$\bar{\nu}$ mode	ν mode
ν_e signal NO (IO)	1092 (497)	76 (36)	ν_{μ} Signal
$\bar{\nu}_e$ signal NO (IO)	18 (31)	224 (470)	$\bar{\nu}_{\mu}$ CC background
Total signal NO (IO)	1110 (528)	300 (506)	NC background
Beam $\nu_e + \bar{\nu}_e$ CC background	190	117	$\nu_{ au} + ar{ u}_{ au}$ CC background
NC background	81	38	$ u_e + ar{ u}_e \mid CC$ background
$\nu_{ au} + ar{ u}_{ au}$ CC background	32	20	$\bar{\nu}$ mode
$ u_{\mu} + ar{ u}_{\mu} \ CC$ background	14	5	$\bar{\nu}_{\mu}$ signal
Total background	317	180	ν_{μ} CC background
			NC background
			$\nu_{\tau} + \bar{\nu}_{\tau}$ CC background
			$ u_e + ar{ u}_e CC$ background

DUNE Physics Sensitivity - δ_{CP}

P5 Less Favorable : no FD4, no ACE-MIRT, and no MCND

Sungbin Oh I 57th Fermilab Users Meeting, 2024

Current Uncertainties for PMNS Parameters

• θ_{23} resolution is dependent on its value

Germilab

DUNE Physics Sensitivity - θ_{23} **Octant**

- A combination of both $\nu_{\rm e}$ appearance and ν_{μ} disa the θ_{23} octant.
- 10 years : 624 kt MW year
- 15 years : 1104 kt MW year ambiguous

$$P_{\nu_{\mu} \to \nu_{\mu}} \approx 1 - \sin^{2} 2\theta_{\mu\mu} \sin^{2} \frac{\Delta m_{\mu\mu}^{2} L}{4E_{\nu}} \approx 1 - \cos^{2} \theta_{13} \sin^{2}(2\theta_{23}) \sin^{2} \frac{\Delta m_{32}^{2}}{4E_{\nu}}$$

with
$$\sin^{2} \theta_{\mu\mu} = \cos^{2} \theta_{13} \sin^{2} \theta_{23} ,$$
$$\Delta m_{\mu\mu}^{2} = \sin^{2} \theta_{12} \Delta m_{31}^{2} + \cos^{2} \theta_{12} \Delta m_{32}^{2} + \cos \delta_{CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^{2} .$$

$$P_{\nu_{\mu} \to \nu_{e}, (\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx 4 \sin^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} 2\theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha^{2} \sin^{2} \theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \theta_{1$$

$$+ 8 \alpha J_{\rm CP}^{\rm max} \cos(\Delta \pm \delta_{\rm CP})$$

$$J_{\mathrm{CP}}^{\mathrm{max}} = \cos heta_{12} \sin heta_{12} \cos heta_{21}$$
 $lpha \equiv \Delta m_{21}^2 / \Delta m$
 $\Delta \equiv rac{\Delta m_{31}^2 L}{4E_
u}$,

- A combination of both ν_{e} appearance and ν_{u} disappearance measurements can probe both maximal mixing and

Fermilab

DUNE Physics Sensitivity - Proton Decay

- - Super-K : 5.9×10^{33} years
 - Hyper-K expected limit : 3×10^{34} years

With 30% detection efficiency for $p \to K^+ \bar{\nu}$, DUNE Phase-II expected limit is 1.3×10^{34} years

DUNE Physics Sensitivity - Supernova Event #

Fig. 10 Top: Spectrum as a function of interacted neutrino energy computed with SNOwGLOBES in 40 kton of liquid argon for the electron-capture supernova [8] ("Garching" model) at 10 kpc, integrated over time, and indicating the contributions from different interaction channels. No oscillations are assumed. Bottom: expected measured spectrum as a function of observed energy, after detector response smearing

‡Fermilab

DUNE Physics Sensitivity - MeV Neutrino Events

Fig. 4 Left: DUNE event display showing a simulated neutrinoelectron ES event (10.25 MeV electron) with track reconstruction. The vertical dimension indicates time and the horizontal dimension indicates wire number. Color represents charge. The top panel shows the collection plane and the bottom panels show induction planes. The boxes

DUNE Physics Sensitivity - NC-NSI Propagation H

$$H = U \begin{pmatrix} 0 \\ \Delta m_{21}^2/2E \\ \Delta m_{31}^2/2E \end{pmatrix} U^{\dagger} + \tilde{V}_{\rm MSW} ,$$

with

$$\tilde{V}_{\rm MSW} = \sqrt{2}G_F N_e \begin{pmatrix} 1 + \epsilon_{ee}^m & \epsilon_{e\mu}^m & \epsilon_{e\tau}^m \\ \epsilon_{e\mu}^{m*} & \epsilon_{\mu\mu}^m & \epsilon_{\mu\tau}^m \\ \epsilon_{e\tau}^{m*} & \epsilon_{\mu\tau}^{m*} & \epsilon_{\tau\tau}^m \end{pmatrix}$$

General Neutrino Physics

Neutrino Sources for PMNS Matrix Elements

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m^2_{21}\;, heta_1$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12} \ , heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ heta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)	,	$ heta_{23}, arDelta m_{31}^2 $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13} \ , heta_{23}$

Solar, Reactor LBL

Reactor MBL

$$P_{\nu_{e} \to \nu_{e}} = 1 - \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{ee}^{2} L}{4E_{\nu}} + \mathcal{O}(\alpha^{2}),$$

$$\Delta m_{ee}^{2} = \cos^{2} \theta_{12} \Delta m_{31}^{2} + \sin^{2} \theta_{12} \Delta m_{32}^{2}.$$
Atmo.

$$\frac{N_{e}}{N_{e}^{0}} - 1 \approx (r \sin^{2} \theta_{23} - 1)P_{2\nu}(\Delta m_{32}^{2}, \theta_{13}) + (r \cos^{2} \theta_{23} - 1)P_{2\nu}(\Delta m_{21}^{2}, \theta_{12}) - \sin \theta_{13} \sin 2\theta_{23} r \Re(A_{ee}^{*} A_{\mu e}).$$
CP-phase

$$\frac{N_{\mu}}{N_{\mu}^{0}} - 1 \approx \sin^{2} \theta_{23} \left(\frac{1}{r} - \sin^{2} \theta_{23}\right) P_{2\nu}(\Delta m_{32}^{2}, \theta_{13}) - \frac{1}{2} \sin^{2} 2\theta_{23} [1 - \Re(A_{33}) + \Re(A_{23})]$$

Acce. LBL

$$\frac{P_{\nu_{\mu} \rightarrow \nu_{\mu}} \approx 1 - \sin^{2} 2\theta_{\mu\mu} \sin^{2} \frac{\Delta m_{\mu\mu}^{2} L}{4E_{\nu}} \approx 1 - \cos^{2} \theta_{13} \sin^{2} (2\theta_{23}) \sin^{2} \frac{\Delta m_{32}^{2} L}{4E_{\nu}} + \mathcal{O}(\alpha, s_{13}^{2}), \quad (14.76)$$

$$\frac{14.76}{1 - A^{2}} \exp^{2} \theta_{13} \sin^{2} \theta_{23}, \quad (14.76)$$

$$\frac{\sin^{2} \theta_{\mu\mu}}{\Delta m_{\mu\mu}^{2}} = \sin^{2} \theta_{12} \Delta m_{31}^{2} + \cos^{2} \theta_{12} \Delta m_{32}^{2} + \mathcal{O}(\alpha, s_{13}^{2}), \quad (14.76)$$

$$\frac{1}{A} \exp^{2} \theta_{\mu\nu} \exp^{2} \theta_{\mu\nu$$

wit

$$\begin{aligned} \sin^2 \theta_{\mu\mu} &= \cos^2 \theta_{13} \sin^2 \theta_{23} \,, \\ \Delta m^2_{\mu\mu} &= \sin^2 \theta_{12} \Delta m^2_{31} + \cos^2 \theta_{12} \Delta m^2_{32} \\ &+ \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m^2_{21} . \end{aligned}$$

13

 $_{1,32}|,\, heta_{13},\delta_{\mathrm{CP}}|$

