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Preamble on Al Project Office

Self-defined goals:

* Developing strategic capabilities within the (inter)national Al ecosystem

— Al to advance lab scientific mission, and where Fermilab can advance Al research

e Building community around cross-cutting problems, tools, and educational opportunities
— Connecting teams across the lab and keeping a big-picture view of what is going on

— Develop infrastructure for Al research — both people (e.g.Al associate program) and
hardware (e.g. GPU access)

» Establish a strategy to support a strong resource profile through network of
stakeholders and partners

» Sharing Fermilab and HEP’s Al work with the world

2& Fermilab
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Why Al & Ml for physics ?

*  We are collecting with huge amounts of
data in HEP experiments

Challenging set up to find insights &
new physics in these huge datasets

Need to maximize science by getting
the most out of experiments

2
10M

5 100 T objects stored
in S3 up to 2021 (5 MB)

2 140 M hours/day
1M of streaming (1 GB)

5

71k B e-mails sent from
2020-10 to 2021-09 (75 KB)
100k

240k photos/min.
shared in 2021

log size (PB)

Al & ML approaches are key to addressing
these problems

— Accelerate time-to-physics &
discovery

— Improve operational efficiency

&

500 EB

@

10k 60k B spam (2 mB) (total)
i cG
s e-mails(5 KB) 511k PBly
zs 60 GB/s WLCG — HL-LHC real /) 40k EB/yr
2 transfers in 2018 i
1000 5.4k PBlY D;("m;“x 65k photos/min. 1.9k PBly data expected in 2026
D b shared in 2021 LHC real
5 O ouuke o (2mB) data in 2018 1200 PBly
733 PBly 800 PBfy
2 HL-LHC Monte Carlo
-~
100 300 PBly 263 PBly 252 PBly @ ) 240 PBly data expected in 2026
160 PBly
5
720k hours/day 68 PB/y 62PB/y 30+ B web pages LHC Morte Catk
of video uploaded (1 GB) 98.83 M new users in 2021 (2.15 MB) onte Carlo :
2 +1.17 M paid subs in 2020 data in 2018 © Luca Clissa (2022)
10 (1.5 GB and 500 GB, respectively)
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source https://arxiv.org/abs/2202.07659
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https://arxiv.org/abs/2202.07659

Al over the years

* Searches for “Artificial Intelligence” in google over the years

— Artificial Intelligence and Machine learning is more main stream

than ever now!
@ OpenAl
+ .
Gemini 2 Claude

100

75
“CNNs exceeded human ability

in image recognition tasks”
50 [ T ——— —

25 +
Google started
(DS~

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Al search Interest

Years

2& Fermilab
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History of Al @ Fermilab

R

Fermi National Accelerator Laboratory
Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers,

FERMILAB-Conf-92/269-E
ELSEVIER Detectors and Associated Equipment
Volume 317, Issues 1-2, 15 June 1992, Pages 346-356
Real time track finding in a drift chamber with Neural Networks at the Tevatron

a VLSI neural network

W. Badgett?, S. Bianchin?, K. Burkett!, M.K. Campbell!, A. Caner?, M. Dall'Agata®?, M. DeNardi?,
B. Denby®, H. Haggerty®, K. Johns*, C.S. Lindsey?, M. Dickson®, G. Pauletta?, L. Santi?,

L. Stanco®?, N. Wainer?, D.Y. Wu!, J.L. Wyss®3
Clark S. Lindsey ?, Bruce Denby ?, Herman Haggerty ?, Ken Johns b

October 1992
LUV ame-o e
LT S

Performance of the CDF neural network electron isolation trigger

75 at Fermilab
B. Denby “*', C.S. Lindsey 2, M. Dickson *, J. Konigsberg °, G. Pauletta ¢,
W. Badgett ¢, K. Burkett ¢, M. Campbell °

* Fermi National Accelerator Laboratory, Batavia, IL, USA
B University of Rochester, Rochester, NY, USA
50 € Harvard University, Cambridge, MA, USA
4 University of Udine, Udine, Italy
& University of Michigan, Ann Arbor, MI, USA

Received 27 July 1994

"*‘

Al search Interest

25

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Years
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Al for Physics & Physics for Al

2& Fermilab
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Outline

» Al for physics
e Recent Highlights

 Physics for Al
e FastML
* Al @ Extreme Edge

* Al for user community
e Computing Resources for Al training and inference
* Engage with Fermilab Al community

e LabWide Al meetings & Jamboree

2& Fermilab
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Learning from data: Unsupervised ML on chip !

* CMS detector creates more data than we can handle !
— Need to throw away 99.75% of data at first stage!
— We are interested in rare and beyond SM physics

— Trigger make real-time decision on which data to record

— Runs on FPGAs within O(100) nano seconds!

— Needs to be unbiased to maximize discovery

* Unsupervised ML technique such as Anomaly Detection
can catch effectively the deviations from SM

— Demonstrated for data analysis for new physics
searches by 3-7x !

0 reconstructjon loss 1

1KHz
1TMB/evt
Records only ~ 0.01%

1/100 the of the data!
events size
X6 more events

— Triggering on “anomalousness” of collision event

2& Fermilab
9 07/10/24  Abhijith Gandrakota | Al & ML @ Fermilab



try

Learning from data: AXOLITL <>

 AXOLITL: triggering on “anomalousness”

his|4 ml| §

— Trained a ML model called Autoencoder
directly on data to find “atypical” signatures

) - payload

— 10x more efficient that conventional trigger | + UAD

algorithms at CMS

* AXOLITL is running on CMS LI Trigger FPGAs
in at LHC, collecting the data

. . . CMS Experiment at the LHC, CERN
— Performs Infer'ence In as ||tt|e as 50 ns ' '/‘ % Data recorded: 2023-May-24 01:42:17.826112 GMT

Run/ Event/ LS: 367883 / 374187302 / 159

— First ever full unsupervised ML trigger

CMS Preliminary Run 379252 0.045 fb-', 2024 (13.6 TeV)

N F— L1 Physi T
[ — L1 Physics Rate

L. 105 Ax0VLoose @AXO TL
E F AXO Loose

T — AXO Nominal
o F— Angighv\l\/
[ — AXO VTight
103 L1_SingleMu22 -
L1_HTT280er

10k

Time [UTC]
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Al for Inference and reconstruction

11

Simulation Based inference for cosmology

Goal: Rapidly find/measure objects, dark
matter/energy from surveys

— Inferring dark energy from
population of strong lensed galaxies

— Scalable for method for inference
from O(1000) Ienses from future
surveys

— Much faster than traditional MCMC

7| | T |l T T T T T T T T T T T T T Ll T T T T I T |l T T ] T T ]
=== Wrge = — 1.0 7]

_____________________________ S S — 1.0F — seed 1
: ) -} r Seed2 A%
- 0.8F .. Seed3
—~ r
1 Xoep™ " 3
{

1 Soaf

[
4 £ f
| 0.2~ 3
e b b :HU’{"..‘{LI..

0 500 1000 1500 2000 2500 3000 0'0}." 7
Number of images for inference w

Accepted to ICML 2024, talk by S. Jarugula
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Iterative

—
Edrift

GNNs for Reconstruction in LArTPC

— Computationally efficient compared to
previous CNN approaches

— Adapted from HEPTrkX for tracking at
LHC

— Archived 98% efficiency in filtering
background

https://arxiv.org/html|/2403.11872v1#S1

2= Fermilab



https://indico.fnal.gov/event/64625/timetable/?view=standard#83-population-level-dark-energ

Al for Theory and Accelerating Simulation

arXiv:2308.03876
» Al for fast detector simulation Nopoyssian Soam
. 400 Diffusion
— Addresses the computational challenge of S‘eps
simulation Geant4 for HL-LHC

Cyl d al Cylmdncl

— Diffusion based models to generate calorimeter

shower simulations et
* Introduces novel geometry latent mapping .
— SOTA model in CaloChallenge with a

|0-1000x speed compared to Geant4

e
Lz L P
. . . r(Z) ‘ -1 —1 ‘ —1 =1 ﬁ/(¢)‘
* Machine Learning for the lattice gauge theory _— D L o
o e 102
— Normalizing Flows to generate correlated N, —2QCD
. o 2 ¢ Pure Gauge
lattice gauge field ensembles § | & Tometcinem
< 4
— Demonstrates variance reduction in the - g
computation of observables 3 ?
: 2
— Significantly reduces statistical uncertainties f
100‘# dVI- du! .2 dt. o | latt @2
https://arxiv.org/pdf/2401.10874 Vo Boo Wi P o Jua| o (g)g L
3¢ Fermilab
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https://arxiv.org/pdf/2401.10874
https://arxiv.org/abs/2308.03876

Robustness NNs

A model with weak A model with strong
> inductive biases inductive biases

*

Domain Adaptation

, f , _ o Robustness in Fast Al w/
Bridges difference between simulation & Obs. Data Knowledge distillation
lllustris simulations — SDSS observations

Regular NN training ——  Domain Adaptation Imparts physics knowledge
- L of the system into the fast
SR L 0 and efficient ML models

https://arxiv.org/abs/2311.14160

“““““

P, » e ‘ Source: Target:

® Barred spiral O Barred spiral
4 Round smooth A Round Smooth
Lens

https://arxiv.org/abs/2302.02005

Nuisance invariant NNs w/ NuRD I
Robust nuisance invariant Rep. learning
Robustness for NN
i S on microelectronics

Top [OOD]

Areciier H 8 protects NNs on chip —|;mai°rity out
35 15F voter

EI o g against bit flips in high f

i radiation environments
__o Critic o0f — ]

e i https://arxiv.org/abs/2406.19522
https://arxiv.org/abs/2401.08777 " Represntationdim. 41 Bit flip!
2& Fermilab
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https://arxiv.org/abs/2401.08777
https://arxiv.org/abs/2311.14160
https://arxiv.org/abs/2406.19522

Al for operations and control system

Navigating Cryogenic System Transients
at CMTF Using a Digital Twin

Predict the future state of a 3000-Liter Dewer level

Design a predictive LSTM reinforcement learning agent

g 8 8 &8 &8 8 8 8 8 §
Power (W]

Coldbox

Optical Cavities for Quantum Gravity Searches

Control a laser interferometer set-up to photon counter
Reinforcement Learning to keep 2L/A constant

14 07/10/24  Abhijith Gandrakota | Al & ML @ Fermilab

Self Driving telescope

Train an algorithm to reactively move a ground telescope
w/ Stone Edge Observatory (controllable with a Slack API)

Stone Edge Observatory
Environment

I
Telescope Agent

Pointing . Next Target
| —

The Sky

Reward

Observation

New State

Diagram of the RL setup. A trained agent takes the current state of the sky, and
moves the telescope to the next optimal target

https://arxiv.org/abs/2311.18094

Too high, agent
tries to dtlecrease

Agent successfully learned
to stabilize the system

Photodetector voltage (V)
—
——

8 3

-0.750

-1.000

1250 L
Too low, agent
tries to increase

Time (s)
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MDATs led

Al for Accelerator Controls

Real-time Edge Al Distributed System

RR Labels

* Differentiate beam loss monitor signals around the ring

* lIdentify if main injector or recycler ring is the source

* Deployed to FPGA on a custom card iif
- - MI Labels ::: .
§100 410?

M Inference

5 641

5 200 532§

2 [ | g

£ 410 §

= 100 s

a N 2313
0

100
0 4 8 12 16 20 24 28 32 36 40 44 48
33 Hz Ticks

NuMI Beam Variability Prediction
& LBNF monitoring
i Predict NuMI proton beam position,
intensity and horn current

Fixed-Target
Experiments,
Test Beam
Facllity
Linac RF Op o e
L-Cape
0 ) ho-lmum.
? »  Predict anomalies and W
i v_lo 35 . . .
Predict PF parameters i " identify causing beam :
to keep beam energy s downtime . =
constant and minimize E;go 20 S——— =
eminence " " = =
40 o 30 0 0 w0
True A phase (deg)

2= Fermilab
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MDATs

Al for Accelerator Controls

Lartger l:qngsagigtg)lclril()l:qte;g;':tlon Digital Twin [/ Virtual Accelerator
o s for PIP-11

P - K | T
e _ ool |
] P
: L= — Real optimal
qr —" AD | Elog Accelerator test
a1 S 3 A .

Actions - A Tue 2024-07-09 09:32:55 Date Span +

:::" will be conducting a flow test on a cavity for ~3 days out at FO. Sorting + u pd ate \

Updats Logs: Main Injector, Operations | Categories: Water | Id: | Memo: faise | Saves: 0 Limit + N
e Thumbnale . model

A Tue 2024-07-09 09:30:02
Log: Controls [V] Features +

Test 1 Virtual L/ R\
A
Log: Operations [V] R:HP328 and R:VP329 were reading unbelievable values, rebooted 40 house BPMs. Test 2 Virtual ’
Clear ) A
e - | | | Currontvirtual | P\ s
Accelerator

online learning mode
(digital twin)

Test “N” Virtual
Accelerator

ESHhg

_: —40 =30 -20 -10 0
True A phase (deg) .
3¢ Fermilab
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Physics for Al : Fast ML

17
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Landscape of Fast ML

31014, I I I ]
@, T LHC sensor Fast ML for Science
* Many experiments, particularly at Fermilab e benchmark tasks
require custom made Al/ML methods 8 107 .
(@]
1 Qubit Readout
* Typically needs to process huge amounts of T i
i H EIC trigger  — Plasma control
data in a very short time scale 5 LHC trigger
DUNE readout
— Beyond the benchmarks in industry 10°8 { X-ray diffraction ]
Neuro
— Need: Real-time and efficient Al + F
10} Magnet quench Internet-of-things =
« CPUs can not keep with these demands i SN
104} ]
— Special hardware FPGAs/ASIC provide ,
R https://arxiv.org/pdf/2207.07958
huge flexibility through parallel compute
190 10|-7 10|-5 10|-3 10|-1 16‘ 163 10°
— Challenging to run ML models on these Computation time [s]

=Of BB

2& Fermilab
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Efficient ML hardware software codesign

* Enabling efficient algorithms and workflows

— Accessible point of entry and easy to use tools for non-experts into hardware

Keras N

o pyTorch his 4 ml L]
€ ONNX

https://pypi.org/project/hisdml/
682 Github stars,
580 downloads last month

Quantized

model Hardware

QKeras (Google) V|VADOA Meﬂ'?.[.n
Brevitas (AMD)
HAWQ (UC Berkeley) G
QONNX (Microsoft/AMD)
Quartus

Prirme

T —

JINST 13 P07027 (2018)

arXiv:2102.11289 https://fastmachinelearning.org/hls4ml
arXiv:2206.07527

2& Fermilab
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https://fastmachinelearning.org/hls4ml
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2206.07527

Al @ Extreme Edge

» Data compression w/ Rad. hard ASICs
— First use of DL for HEP on ASICs

— Developed for use in
CMS High Granularity CALorimeter

— Powerfull nonlinear data compression
schemes

Input image Decoded image

On-detector ASIC

Off-detector
w programmable logic

In-sensor mixed-signal
spiking convolutional NN
to extract {t,Q.x.,2.8,9k

» Smart pixels: Pixel sensors w/ Al on chip
— Efficiently filter low p; tracks
— Saving up to 75% of data bandwidth

— Curial for future colliders
e.g: Reducing beam background in uC
10.1109/ISCAS46773.2023.10182033

e AI/ML for controlling and optimizing quantum computers

— Edge Al to improve qubit readout

— Denoising computations in theory calculations

— Predicting quantum circuit fidelity on noisy hardware

20

©® From Resonator

®
Resonator

@ To Resonator
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https://doi.org/10.1109/ISCAS46773.2023.10182033

Al @ Edge =

21

Data compression w/ Rad. hard ASICs l

—_ F| yahoo.’finance Search for news, symbols or companies

—_— D My Portfolio News Markets Sectors Screeners Personal Finance Videos

C UIUI-U" ] ] ]

2 Siemens simplifies development of Al
— I«

| accelerators for advanced system-on-

chip designs with Catapult AI NN

PR Newswire
Tue, May 21, 2024, 8:00 AM CDT « 5 min read

Ta Thic Autiala.

Catapult Al NN brings together hls4ml, an open-source package for

machine learning hardware acceleration, and Siemens' Catapult™ HLS

software for High-Level Synthesis. Developed in close collaboration

Al/ML 1 with Fermilab, a U.S. Department of Energy Laboratory, and other
leading contributors to hls4ml, Catapult Al NN addresses the unique

— Ed requirements of machine learning accelerator design for power,

— D¢ performance, and area on custom silicon.

In-sensor mixed-signal
spiking convolutional NN
to extract {t,Q.x.%,2,0,¢}

's w/ Al on chip
pr tracks
data bandwidth

liders
background in uC

® From Resonator

®
Resonator

e —— e e e e ———— TS

— PredituiighjuaimeammermedrtraeTy O 1o ST vV s

© To Resonator
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Fast ML for control systems

Magnet Quench Detection

* Efficiently detect quenches in SC magnets

— Predicitve models to take preventive
measures and decrease downtime

— Critical for enabling future energy and
intensity frontier experiments

Voltage Taps
256 sensof rs

10-10000 kHz
+-1kV

Quench Antenna

SC magnet sL
1.8K superfluid He

22 07/10/24  Abhijith Gandrakota | Al & ML @ Fermilab

Supernova Detection with DUNE

Quickly detect and point to the Supernova bursts

Uses FPGAs to bring power efficient
processing to the data

Prompt detection enables multi-messenger
astronomy for follow up w/ other detectors

To Data
Selection

Event
Builder
Computers

RAM 10 sec

10 s circular buffer

DAQ Front End Comp

2= Fermilab



Fast ML for Science Benchmarks

—

o
=
'S

1012_

Data rate [B/s]

—_
o
o

\V 1)

108}

108|-

104}~

T T
%‘ LHC sensor

*

Qubit Readout

+ oy
EIC triggey  — Plasma control

=y~ LHC trigger

DUNE readout

X-ray diffraction
Neuro
-+

+
Magnet quench

Beam control

https://arxiv.org/pdf/2207.07958

| |

| I |

Fast ML for Science
benchmark tasks

Internet-of-things ]

|

2
%00

23

|
1077 102 10~

| |
10" 10" 108 105
Computation time [s]
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Development of open source tools helps
democratize the (edge) Al for all of HEP
(hls4ml, DeepBench, SONIC, Open Data ...)

Benchmarks for HEP challenges will leads to
more AlI/ML solutions and broader engagement

— Fast ML Science benchmarks takes a
step in this direction

— Tasks with well defined real-time system
and resource constraints

— Challenges for broader Al community w/
datasets and baseline models

2= Fermilab



Al for Fermilab user community
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Elastic analysis facility ecosystem

* Platform for rapid scientific analysis with modern web and container technologies

— Equipped with industry leading GPUs for Al training and inference

* Highly scalable, customizable computing infrastructure

— Capable of bursting to O(100k)batch computing cores

Fermilab Elastic Analysis Facility Ecosystem

* External to Kubernetes

--------------------------- o___ .
) Reproduc_:lble lUP! /terHub ( D= \ ( \
HUb Environments ENAL HTCondor ! TupyterHUB ; ! SSH II
( DUVE  pBooNB_ cMsLpC e i
=/ /;\ [LATIAT] # ' \
Zamey 1
) | Distributed deep learning__ | o @ :
DeterminedAl model training e é( AL tConco | ., UsSERUI
4 DUNE o _
‘f_% %ﬁ . 8 HTCondor batch : Tupyter r
£ 5 : — submit  — !
BoeNE '6' A @ : —— dask
Data extraction ! - T
rviceX and delivery Dt \ /)
GPGrid ! V
i )
1
__________________________ ! Local Celoud) resources
NVIDIA GPUaaS inference \
TritonRT !
e o \ AF "seed’ of resources
Dask Clusters e, 7S
5 . (Ksbased) |  Dask o tonant
o model asl usters
Cabinetry building and analysis Gateway ) (HTCondor based)

https://eafjupyter.readthedocs.io/en/latest/index.html

2= Fermilab
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Al community @ Fermilab

* Bi weekly lab-wide Al meetings

— Discuss the latest development in Al and
cutting edge Al/ML projects across the lab

— Great avenue to learn and collaborate

— https://indico.fnal.gov/category/ 1446/

— Announcements: aimeetings@listserv.fnal.gov

* Al Jamboree
— Highlight current Al activities at the lab

— Panel discussions and Idea incubator

* Engage with broader Al and HEP community

26 07/10/24  Abhijith Gandrakota | Al & ML @ Fermilab

Wilson Hadll

ONE WEST

9 AM - 4:30 PM

Agenda:

Overview of Al & HEP
Example Applications
Panel Q&A

Idea Incubator:
Idea Incubator

Stick around for coffee and snacks and
share your Al work or discuss
interesting applications with experts
and enthusiasts by making an Al flyer!

Al JAMBOREE

10/2372023

LEARN MORE ABOUT THE Al ACTIVITIES AND PLANS AT FERMILA

2= Fermilab


https://indico.fnal.gov/category/1446/
mailto:aimeetings@listserv.fnal.gov

Landsacpe of Al @Fermilab

Al for HEP science

' Using Fast, Efficient , Robust and Generalizable Al approaches

3¢ Fermilab
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Broad view of Fermilab Al efforts

Connect with the Al project office!

Collider Physics / Quantum
Computing

Accelerator Neutrino // ‘ uQ
Physics
Surrogate Inductive 7\ Accelerator

Active
1 ~ w_ ___/

Muon Physics _// > earning
y AN

Real-time \7\

Detectors & Controls

Particle Physics

Dark Matter & Simulation & Theory

Dark Energy

Learn more at: ai.fnal.gov
Subscribe to meeting announcements: aimeetings@listserv.fnal.gov.

2& Fermilab
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