SENERGY Science

Beam Dynamics Challenges in the Muon g − 2 Experiment

Brynn MacCoy, University of Washington July 11, 2024

Measured values of the muon anomalous magnetic moment a_{μ}

• Latest Fermilab Muon g-2 measurement confirmed previous measurements with highest precision yet

춮 Fermilab

Measured values of the muon anomalous magnetic moment a_{μ}

- Latest Fermilab Muon g-2 measurement confirmed previous measurements with highest precision yet
- Strengthened standing discrepancy in experiment vs. Standard Model theory

춮 Fermilab

Measured values of the muon anomalous magnetic moment a_{μ}

- Latest Fermilab Muon g-2 measurement confirmed previous measurements with highest precision yet
- Strengthened standing discrepancy in experiment vs. Standard Model theory

<u> 委</u> Fermilab

Measured values of the muon anomalous magnetic moment a_{μ}

- Latest Fermilab Muon g-2 measurement confirmed previous measurements with highest precision yet
- Strengthened standing discrepancy in experiment vs. Standard Model theory

<u> 委</u> Fermilab

UNIVERSITY of WASHINGTON

• More motivation than ever to deliver highest-precision measurement

 $\vec{\mu} = \text{g}$ \overline{q} $2m$ \vec{S} magnetic moment gyromagnetic ratio spin

Spins precess in external magnetic field

$$
\omega = \mathsf{g}\frac{q}{2m}B
$$

Spins precess in external magnetic field

 $\omega = g$

 \overline{S} $\vec{\mathcal{S}}$

Spins precess in

external magnetic field

• Dirac equation for spin $\frac{1}{2}$ particles $g = 2$ 2 particles

 \overline{q}

 \vec{S}

spin

 $2m$

gyromagnetic ratio

Loop corrections \rightarrow anomalous magnetic moment

 $\vec{\mu} = \text{g}$

magnetic moment

UNIVERSITY of WASHINGTON

조 Fermilab

 $\omega = g$

 $g = 2(1 + a)$

 \overline{q}

 $2m$

Y

Spins precess in

external magnetic field

• Dirac equation for spin $\frac{1}{2}$ particles $g = 2$ 2 particles

 \vec{S}

spin

 \overline{q}

 $2m$

gyromagnetic ratio

Loop corrections \rightarrow anomalous magnetic moment

 $\vec{\mu} = \text{g}$

magnetic moment

> *l l* $X \nearrow X$ Y Virtual particles X, Y $g = 2(1 + a)$

 \overline{q}

 \boldsymbol{B}

 $2m$

 $\omega = g$

• Predict with Standard Model: QED (dominant), EW, QCD contributions

 \overline{S} $\vec{\mathcal{S}}$

 \overline{B}

charged particle

precession

Spins precess in

external magnetic field

• Dirac equation for spin $\frac{1}{2}$ particles $g = 2$ 2 particles

 \vec{S}

spin

 \overline{q}

 $2m$

gyromagnetic ratio

Loop corrections \rightarrow anomalous magnetic moment

 $\vec{\mu} = \text{g}$

magnetic moment

> *l l* $X \nearrow X$ Y Virtual particles X, Y $g = 2(1 + a)$

 \boldsymbol{B}

 \overline{S} $\vec{\mathcal{S}}$

 \overline{B}

charged particle

<u> 委 Fermilab</u>

UNIVERSITY of WASHINGTON

precession

 \overline{q}

 $2m$

 $\omega = g$

- Predict with Standard Model: QED (dominant), EW, QCD contributions
- Discrepancy with experiment suggests new physics

- Goal: Measure a_μ to 140 ppb (4× more precise than BNL, on par with theory precision target)
- Details in On Kim's g-2 report today
- Inject polarized muons (μ^+) into magnetic storage ring

- Goal: Measure a_μ to 140 ppb (4× more precise than BNL, on par with theory precision target)
- Details in On Kim's g-2 report today
- Inject polarized muons (μ^+) into magnetic storage ring
- $q > 2$: anomalous precession

$$
\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

- Goal: Measure a_μ to 140 ppb (4× more precise than BNL, on par with theory precision target)
- Details in On Kim's g-2 report today
- Inject polarized muons (μ^+) into magnetic storage ring
- $q > 2$: anomalous precession

 $\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -a_a$ \boldsymbol{e} \overline{m} \overline{B} Extract from two observables

- Goal: Measure a_μ to 140 ppb (4 × more precise than BNL, on par with theory precision target)
- Details in On Kim's g -2 report today
- Inject polarized muons (μ^+) into magnetic storage ring
- $g > 2$: anomalous precession

- $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$
- 24 calorimeters measure e^+ energy and arrival time

$$
\boxed{\vec{\omega}_a} = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

Measure with calorimeters

- $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$
- 24 calorimeters measure e^+ energy and arrival time

$$
\boxed{\vec{\omega}_a} = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

Measure with calorimeters

- $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$
- 24 calorimeters measure e^+ energy and arrival time
- e^+ above E threshold vs time modulated by ω_a

$$
\boxed{\vec{\omega}_a} = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

Measure with calorimeters

Magnet cross section

$$
\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

Measure with proton NMR probes

• Trolley maps field every few days

$$
\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \vec{B}
$$

Measure with proton NMR probes

Magnet cross section

Magnet cross section

$$
\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -a_\mu \frac{e}{m} \boxed{\vec{B}}
$$

Measure with proton NMR probes

Magnet cross section

Measure with proton NMR probes

Magnet cross section

춘 Fermilab

- Beam dynamics (motion of the muons) affects both observables
- My thesis focused on several beam dynamics effects critical for precision goal

$$
\left[\overrightarrow{\omega}_a\right] = \overrightarrow{\omega}_s - \overrightarrow{\omega}_c = -a_\mu \frac{e}{m} \overrightarrow{B}
$$

Beam Dynamics Challenges in the Muon g-2 Experiment

<u> 委</u> Fermilab UNIVERSITY of WASHINGTON

8 07/11/2024 Brynn MacCoy | maccob@uw.edu | Fermilab Users Meeting

• Inflector magnet cancels field along injection path

- Inflector magnet cancels field along injection path
- Pulsed kicker magnets shift beam to nominal orbit

- Inflector magnet cancels field along injection path
- Pulsed kicker magnets shift beam to nominal orbit
- Electric quadrupoles contain beam vertically

- Inflector magnet cancels field along injection path
- Pulsed kicker magnets shift beam to nominal orbit
- Electric quadrupoles contain beam vertically
- Straw trackers reconstruct muon distribution

• Challenges: fringe fields, no steering elements Beam Inflector 5.4 m Ring segment top view **Characterizing beam during challenging injection** 18×56 mm **Inflector**

Average magnetic field experienced by muons

- Inputs: Field maps and beam profiles around the ring
- Weight field in azimuth slices, then average around ring

 $\tilde{B} = \langle B(\vec{r}) \times M(\vec{r}) \rangle$

초 Fermilab

Average magnetic field experienced by muons

- Inputs: Field maps and beam profiles around the ring
- Weight field in azimuth slices, then average around ring

 $\omega_a = -a_\mu$

 \boldsymbol{e}

 \widetilde{B}

 \overline{m}

Average magnetic field experienced by muons

- Inputs: Field maps and beam profiles around the ring
- Weight field in azimuth slices, then average around ring

 $\omega_a = -a_\mu$

 \boldsymbol{e}

 \widetilde{B}

<u> 委 Fermilab</u>

UNIVERSITY of WASHINGTON

 \overline{m}

- Led analysis for 2021 and 2023 results
- Proper muon distribution weighting prevents a bias of up to \sim 50 ppb with excellent uncertainty ~10 ppb

• Original: Ideal motion in vertical B field

$$
\vec{\omega}_a = -a_\mu \frac{e}{m} \vec{B}
$$

- Original: Ideal motion $\vec{\omega}_a = -a_\mu$
in vertical B field
- Electric quadrupole field \rightarrow motional B field

- Cancel with nominal momentum 3.094 GeV
- Nonzero due to momentum spread (~0.1%) \rightarrow correction to ω_a

- Original: Ideal motion \overline{a} in vertical B field
- Electric quadrupole field \rightarrow motional B field

$$
\vec{\omega}_a = -a_\mu \frac{e}{m} \vec{B}
$$

$$
-\frac{e}{m} \left[-\left(a_\mu - \frac{1}{\gamma^2 - 1}\right) \vec{\beta} \times \vec{E} \right]
$$

Higher momentum muons orbit at larger radius \rightarrow lower cyclotron frequency

- Original: Ideal motion $\vec{\omega}_a = -a_\mu$
in vertical B field
- Electric quadrupole field \rightarrow motional B field

Circulating beam intensity seen by calos

Higher momentum muons orbit at larger radius \rightarrow lower cyclotron frequency

- Original: Ideal motion $\vec{\omega}_a = -a_\mu$
in vertical B field
- Electric quadrupole field \rightarrow motional B field

Circulating beam intensity seen by calos

Reconstruct momentum from frequency analysis

춮 Fermilab UNIVERSITY of WASHINGTON

- Original: Ideal motion $\vec{\omega}_a = -a_\mu$
in vertical B field
- Electric quadrupole field \rightarrow motional B field

Circulating beam intensity seen by calos

Reconstruct momentum from frequency analysis

07/11/2024 12 07/11/2024 Brynn MacCoy | maccob@uw.edu | Fermilab Users Meeting

UNIVERSITY of WASHINGTON

춮 Fermilab

Injection kicker strength varies over muon injection time \rightarrow stored momentum is time-dependent; distorts reconstruction

Injection kicker strength varies over muon injection time \rightarrow stored momentum is time-dependent; distorts reconstruction

- Injection kicker strength varies over muon injection time \rightarrow stored momentum is time-dependent; distorts reconstruction
- Still a significant uncertainty in 2023 result (32 ppb out of 70 ppb total systematic)

- Injection kicker strength varies over muon injection time \rightarrow stored momentum is time-dependent; distorts reconstruction
- Still a significant uncertainty in 2023 result (32 ppb out of 70 ppb total systematic)
- Special measurements with new detector in final run to map the correlation
	- Ongoing analysis is helping deepen our understanding of subtle effects, aiming to reduce the uncertainty

Scintillating fibers coupled to SiPMs

- Directly sample circulating beam \rightarrow measure momentum
- Collaborated in development led by C. Claessens

UNIVERSITY of WASHINGTON

07/11/2024 13 07/11/2024 Brynn MacCoy | maccob@uw.edu | Fermilab Users Meeting

Conclusions

- Characterizing effects from beam dynamics is critical for reaching Muon g-2 precision target of 140 ppb
- My thesis focused on key beam dynamics challenges necessary to achieve this result

Thanks to Muon g-2 members and the URA!

Muon g-2 Collaboration meeting at University of Liverpool, July 2023 \sim

15/51 07/11/2024 Brynn MacCoy | maccob@uw.edu | Fermilab Users Meeting