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Muon g-2 measurements reached unprecedented precision in 2023

07/11/2024

• Latest Fermilab Muon g-2 measurement confirmed previous measurements 

with highest precision yet  

• Strengthened standing discrepancy in experiment vs. Standard Model theory 

• More motivation than ever to deliver highest-precision measurement
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• My thesis focused on several 

beam dynamics effects critical 

for precision goal
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• Challenges: fringe fields, 

no steering elements
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Inflector 
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• Challenges: fringe fields, 

no steering elements

• Built Inflector Beam Monitoring 

System (IBMS) detectors to 

monitor injected beam

• IBMS assisted with beam 

tuning and injection modeling

• Collaboration with AD members

• Critical for muon storage 

efficiency, systematics

IBMS 1 IBMS 2 IBMS 3

Beam 

Inflector 
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Ring segment top view

Scintillating fibers 
coupled to silicon 
photomultipliers
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IBMS3 inserted 
for special runs



• Inputs: Field maps and beam profiles around the ring
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• Led analysis for 2021 and 2023 results

• Proper muon distribution weighting prevents a bias of up to ~50 ppb 

with excellent uncertainty ~10 ppb
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• Injection kicker strength varies over muon injection time → 
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• Injection kicker strength varies over muon injection time → 
stored momentum is time-dependent; distorts reconstruction 

• Still a significant uncertainty in 2023 result 

(32 ppb out of 70 ppb total systematic)

• Special measurements with new detector in final run to map 

the correlation

– Ongoing analysis is helping deepen our understanding 

of subtle effects, aiming to reduce the uncertainty

Lingering uncertainty on E field correction
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Pulsed kicker 
magnet strength

Injected 
muon bunch

150 ns

Injection time vs. momentum correlation

Stored momentum 
changes with kick strength

150 ns

Scintillating fibers 
coupled to SiPMs

• Directly sample circulating beam 
→ measure momentum

• Collaborated in development led by C. Claessens
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• Characterizing effects from beam dynamics is critical for reaching Muon g-2 precision 

target of 140 ppb

• My thesis focused on key beam dynamics challenges necessary to achieve this result

Conclusions
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Detectors to assist 
with beam injection

 ×

Beam profileField map

Muon-weighted magnetic field
Direct measurement of 
beam momentum to 
reduce uncertainty



Thanks to Muon g-2 members and the URA!
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Summer Collaboration meeting at University of Liverpool  July 24-28, 2023Muon g-2 Collaboration meeting at University of Liverpool, July 2023
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