Report from the NOvA Experiment

Mark Messier Indiana University

57th Annual Users Meeting: Inspirations from P5 Fermilab 11 July 2024

The NOvA Collaboration

211 members from 50 institutions in 8 countries

Neutrino mixing and oscillations

$$\begin{vmatrix} \nu_{1} & \nu_{2} & \nu_{2} \\ \nu_{2} & \nu_{3} \\ \nu_{4} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 1 \end{pmatrix} \begin{vmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$P_{\alpha\beta} = \sin^{2} (2\theta) \sin^{2} \left(1.27\Delta m^{2} \ [eV^{2}] \frac{L \ [km]}{E \ [GeV]} \right)$$

$$\begin{vmatrix} \Delta m_{32}^{2} \end{vmatrix} \equiv \begin{vmatrix} m_{3}^{2} - m_{2}^{2} \\ 2 \times 10^{-3} \ eV^{2} \\ \nu_{\mu} \rightarrow \nu_{\mu} & \nu_{e} \rightarrow \nu_{e} \\ \nu_{\mu} \rightarrow \nu_{\tau} & \nu_{\mu} \rightarrow \nu_{e} \end{pmatrix} \Delta m_{21}^{2} \simeq 8 \times 10^{-5} \ eV^{2}$$

$$z \approx 10^{-5} \ eV^{2} \\ z \approx 10^{-5} \ eV^{2} \ eV^{2} \ eV^{2} \ eV^{2} \ eV^{2} \$$

Inspirations from P5

- Under the heading "Deciphering the Quantum Realm", P5 calls for us to "Elucidate the Mysteries of Neutrinos". NOvA addresses each of the main questions posed:
 - The ordering of the neutrino masses
 - Precision studies including exploration of muon-tau symmetry
 - Search for and measure CP violation
 - Searches for physics beyond the (v) Standard Model
- 2008: "Recommends a world-class neutrino program as a core of the US program", "upgrade the neutrino source to 700 kW" and "rapid NOvA construction start".
- 2014: NOvA operations just beginning; P5 formulated what is now DUNE; first step is a recommended upgrade of the proton source to 1.2 MW.
- 2023: Recommendation 1: "...support operations of ongoing experiments and research to enable maximum science" and reaffirms "major initiatives" including NOvA

ttps://science.osti.gov/-/media/hep/pdf/files/pdfs/p5_report_06022008.pdf

ttps://www.usparticlephysics.org/wp-content/uploads/2018/03/FINAL_P5_Report_053014.pdf

ttps://www.usparticlephysics.org/2023-p5-report/decipher-the-quantum-realm.html

Fermilab Batavia, IL

9.0°0 151 0

A CONTRACTOR

NOvA Far Detector Laboratory Ash River, MN

Q %

 10^3 Neutrinos / m² / GeV / 5 × 10¹³ POT

Beam Intensity =56.52 E12 Pwr =1024.72 KW (DT=1.06500 s) - A9 event 2024-06-26 07:17:44

New NuMI power record: 1.018 MW

Fermilab JETP Seminars From NOvA

28 June 2024	New 3-flavor neutrino oscillation results from NOvA	Erika Catano-Mur (William & Mary)
22 March 2024	Measurement of the Triple-Differential Muon-Antineutrino Charged-Current Inclusive Cross Section in the NOvA Near Detector	Prabhjot Singh (Queen Mary University London)
09 February 2024	Results from a joint analysis of data from NOvA and T2K	Zoya Vallari (Caltech)
02 February 2024	Exploring signatures in muon-neutrino charged-current measurements at NOvA	Leonidas Aliaga Soplin (UT Arlington) & Travis Olson (University of Houston) 12

NOvA PHDs July 2023 - July 2024

(1)	7/2023	Constraining neutrino oscillation and interaction parameters with the NOvA Near Detector and Far Detector data using Markov Chain Monte Carlo	Michael Dolce, Tufts University
(2)	7/2023	A measurement of muon neutrino charged-current interactions with a charged pion in the final state using the NOvA near detector	Paul Rojas, Colorado State University
(3)	7/2023	Measurement of the Total Cross-Section of Muon Neutrino Charged-Current Coherent Pion Production in NOvA Near Detector	Kuruppumullage Don Chatura Dilshan Kuruppu, University of South Carolina
(4)	8/2023	Constraining neutrino interaction uncertainties for oscillation measurements in the NOvA experiment using Near Detector data	Maria Martinez-Casales, Iowa State University
(5)	8/2023	Measurement of the muon neutrino charged-current single charged pion production cross-section in the NOvA Near Detector	Cathal Sweeney , University College London, UK
(6)	9/2023	Study of neutron detector response and related systematic uncertainties in the NOvA oscillation analysis	Miranda Rabelhofer , Iowa State University
(7)	10/2023	Improving the NOvA 3-Flavour Neutrino Oscillation Analysis	Veera Mikola , University College London, UK
(8)	1/2024	Analysis of neutrino interactions for the search of supernova signals	Andrey Sheshukov , Joint Insitute of Nuclear Research
(9)	4/2024	BSM Studies Using Long-baseline Neutrino Experiment	Barnali Brahma , Indian Institute of Technology Hyderabad
(10)	5/2024	Classification of particles with a convolutional neural network for neutrino and antineutrino events in the NOvA experiment	Akshay Chatla, University of Hyderaßad

14% of data sample with E_{avail} between 300 and 600 MeV

Interaction category

quasi-elastic	meson exchange	resonant production	deep-inelastic	Other
4%	1%	68%	22%	5% 15

From, "Measurement of the Triple-Differential Muon-Antineutrino Charged-Current Inclusive Cross Section in the NOvA", JETP 22 March 2024

Measurement of total inclusive cross-section

Theoretical treatments of 2p2h-meson exchange currents systematically underestimate the total cross-section.

Empirical treatments (GENIE tuned by NOvA, eg.) are better matches to the data.

"2p2h" scattering

From, "Exploring 2p2h signatures in muon-neutrino charged-current measurements at NOvA", JETP 2 February 2024

E = 2.1 GeV

E = 2.0 GeV

 $\nu_{\mu} \rightarrow \nu_{\mu} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

 $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

NOvA Preliminary

NOvA's is the best single-experiment measurement.

NOvA Preliminary

NOvA data, combined with reactor measurements, prefer normal ordering with a Bayes factor of 6.8

NOvA Preliminary

- NOvA data prefer regions where the effects of matter and CP phase cancel.
- Regions where these add (NO, $3\pi/2$) & (IO, $\pi/2$) are largely ruled out.
- If the ordering is inverted, CP conserving values of δ (0, π , 2π) are ruled out at 3σ .

NOvA - T2K Joint Fit

- Individual experiments (T2K in red and NOvA in blue) favor normal ordering, but fit together (black, dashed) there is no preference normal ordering vs. inverted ordering
- $\delta_{CP} = \pi/2$ excluded at 3σ
- δ_{CP} unconstrained in NO, $\delta_{CP}{=}0,\,\pi$ excluded at 3σ in IO
- This joint fit uses 2020 data sets. Future joint-fits will be a topic of a workshop later this year.

Summary and conclusions

This year NOvA released new data, doubling its neutrino data set and NuMI set beam power record of 1 MW

- Best single experiment measurement of Δm_{32}^2 (1.5%)
- Slight preference for θ_{23} in upper octant, maximal (µ/τ-symmetric) θ_{23} is a very good fit
- Data prefer oscillation parameters to be in region where effects of matter an CP phase cancel.
- Interpretation of CP violation strongly coupled to mass ordering resolution

NuMI will continue operations through end of CY2026

• Our goal is to double antineutrino data set.

•

٠

• Will either show that the oscillation parameters are in the degenerate region or resolve the mass ordering at $\sim 2\sigma$.