

In this talk I'll try to answer the following question:

# How dark can be the DM?

I will assume DM is only **gravitationally** coupled to us\* and see how far we can progress



I will assume DM is only **gravitationally** coupled to us\* and see how far we can progress



everything become very difficult buying this **assumption** what about the **abundance**?

\*a bit conservative, but it is what data are telling us

dark sector is **initially empty**, we focus on the '**jump start**' provided by the gravitational coupling to the SM background

dark sector is **initially empty**, we focus on the '**jump start**' provided by the gravitational coupling to the SM background



dark sector is **initially empty**, we focus on the '**jump start**' provided by the gravitational coupling to the SM background



Sector can have dynamics after it's produced (still secluded)

dark sector is **initially empty**, we focus on the '**jump start**' provided by the gravitational coupling to the SM background



- Sector can have dynamics after it's produced (still secluded)
- Focus on model independent/unavoidable sources of energy

dark sector is **initially empty**, we focus on the '**jump start**' provided by the gravitational coupling to the SM background



- Sector can have dynamics after it's produced (still secluded)
- Focus on model independent/unavoidable sources of energy
- Focus on **particle DM**, not discussing PBHs

## An anticipation

 ${f two}$  main sources of energy from the SM considered  ${f so}$   ${f far}$ 

## An anticipation

two main sources of energy from the SM considered so far

■ The SM is a **hot thermal plasma**: can we get some energy from it?



$$\rho_{\rm SM} \sim T^4$$

freeze-in through gravity

## An anticipation

two main sources of energy from the SM considered so far

■ The SM is a **hot thermal plasma**: can we get some energy from it?



$$\rho_{\rm SM} \sim T^4$$

freeze-in through gravity

■ The **FRW background** breaks time translation: can this energy non-conservation be used for the dark sector?



$$ds^2 = a^2(\tau)(d\tau^2 - dx^2)$$
 particle production in curved space























Secluded dark sectors can be produced:

At large temperatures T



- At large temperatures T
- At large physical wavenumbers k/a



- At large temperatures T
- At large physical wavenumbers k/a
- At large Hubble values



- At large temperatures T
- At large physical wavenumbers k/a
- At large Hubble values

$$\gtrsim M$$



Secluded dark sectors can be produced:

- At large temperatures T
- At large physical wavenumbers k/a
- At large Hubble values

 $\gtrsim M$ 

'jump start' won't give much energy budget —> DM heavy
eventually we are sensitive to the end of inflation/start of reheating



**seclusion** can be difficult to achieve if all terms allowed by symmetry are included

## Rules of the game

I am interested in **secluded** and **initially empty** dark sectors

$$\int d^4x \sqrt{-g} \mathcal{L}_{\text{SM+inflaton}} + \int d^4x \sqrt{-g} \mathcal{L}_{\text{DM}} + M_{\text{Pl}}^2 \int d^4x \sqrt{-g} R$$

defined by the above interactions (and nothing more)

## Rules of the game

I am interested in **secluded** and **initially empty** dark sectors

$$\int d^4x \sqrt{-g} \mathcal{L}_{\text{SM+inflaton}} + \int d^4x \sqrt{-g} \mathcal{L}_{\text{DM}} + M_{\text{Pl}}^2 \int d^4x \sqrt{-g} R$$

defined by the above interactions (and nothing more)

- Inflaton reheats only the SM
- No energy from self-interactions (e.g. no misalignement, system in vacuum state...)

## Rules of the game

I am interested in **secluded** and **initially empty** dark sectors

$$\int d^4x \sqrt{-g} \mathcal{L}_{\text{SM+inflaton}} + \int d^4x \sqrt{-g} \mathcal{L}_{\text{DM}} + M_{\text{Pl}}^2 \int d^4x \sqrt{-g} R$$

defined by the above interactions (and nothing more)

- Inflaton reheats only the SM
- No energy from self-interactions (e.g. no misalignement, system in vacuum state...)

are there theories like these?

#### Accidental seclusion

Seclusion is a tough requirement

$$\int d^4x \sqrt{-g} (\mathcal{L}_{SM} + \mathcal{L}_{DM} + \frac{\mathcal{O}_{SM}\mathcal{O}_{DM}}{M_{Pl}^{4-\Delta}})$$

#### Accidental seclusion

Seclusion is a tough requirement

$$\int d^4x \sqrt{-g} (\mathcal{L}_{SM} + \mathcal{L}_{DM} + \frac{\mathcal{O}_{SM}\mathcal{O}_{DM}}{M_{Pl}^{4-\Delta}})$$

how to avoid marginal/relevant coupling to SM?

- Dark sectors with fermion DM
- Dark sectors with gauge symmetries
- Dark sectors with self-interactions



# Archetype of secluded DM sectors - I

■ Dark sector: **pure Yang-Mills** 

$$-\frac{G_{\mu\nu}^2}{4g^2}$$

confinement gives glueball DM

## Archetype of secluded DM sectors - I

■ Dark sector: **pure Yang-Mills** 

$$-\frac{G_{\mu\nu}^2}{4q^2}$$

confinement gives glueball DM

■ Dark sector: **free fermion** <——— mostly today!

$$i\bar{\psi}\gamma^{\mu}D_{\mu}\psi + \frac{M}{2}(\psi\psi + h.c.)$$
 fermionic DM

## Archetype of secluded DM sectors - I

Dark sector: pure Yang-Mills

$$-\frac{G_{\mu\nu}^2}{4q^2}$$

confinement gives glueball DM

■ Dark sector: **free fermion** <——— mostly today!

$$i\bar{\psi}\gamma^{\mu}D_{\mu}\psi + \frac{M}{2}(\psi\psi + h.c.)$$
 fermionic DM

what is common to these sectors?



I believe that the **prototype** of secluded dark sectors are **dark CFTs\*** or less fancy: **conformally coupled** matter

I believe that the **prototype** of secluded dark sectors are **dark CFTs\*** or less fancy: **conformally coupled** matter



Energy/Temperature/Wavenumber

I believe that the **prototype** of secluded dark sectors are **dark CFTs\*** or less fancy: **conformally coupled** matter



Energy/Temperature/Wavenumber

at very high scales production can be insensitive to M

\*need to have a symmetry that stabilizes DM or accidental stability

dark CFTs are among the most secluded sectors

dark CFTs are among the most secluded sectors

$$T^{\mu}_{\ \mu}=0$$
 — Weyl invariant theory  $g_{\mu\nu} o \Omega^2(x)g_{\mu\nu}, \ ext{field} o \Omega(x)^{\lambda} ext{field}$ 

dark CFTs are among the most secluded sectors

$$T^{\mu}_{\mu}=0$$
 — Weyl invariant theory  $g_{\mu\nu} o \Omega^2(x)g_{\mu\nu}, \ ext{field} o \Omega(x)^{\lambda} ext{field}$ 

- **No** CFT production from de Sitter expansion
- No massless fermion, no gauge fields production from FRW

dark CFTs are among the most secluded sectors

$$T^{\mu}_{\mu} = 0$$
 — Weyl invariant theory  $g_{\mu\nu} \to \Omega^2(x) g_{\mu\nu}$ , field  $\to \Omega(x)^{\lambda}$  field

- **No** CFT production from de Sitter expansion
- No massless fermion, no gauge fields production from FRW

#### This invariance is only lost when:

- 1. CFT approximation breaks down (Mass or running)
- 2. Gravity is dynamical: fluctuations on top of FRW

dark CFTs are among the most secluded sectors

$$T^{\mu}_{\ \mu}=0$$
 — Weyl invariant theory  $g_{\mu\nu} o \Omega^2(x)g_{\mu\nu}, \ ext{field} o \Omega(x)^{\lambda} ext{field}$ 

- **No** CFT production from de Sitter expansion
- No massless fermion, no gauge fields production from FRW

#### This invariance is only lost when:

- 1. CFT approximation breaks down (Mass or running)
- 2. Gravity is dynamical: fluctuations on top of FRW

(production from the **thermal** plasma at work in the **CFT** limit)

$$M \frac{n_{\rm DM}}{s} |_{\rm today} = 0.4 \,\mathrm{eV}$$

$$M \frac{n_{\mathrm{DM}}}{s} \big|_{\mathrm{today}} = 0.4 \, \mathrm{eV}$$
 conformally coupled dark matter?

$$M \frac{n_{\rm DM}}{s} \big|_{\rm today} = 0.4 \,\mathrm{eV}$$

conformally coupled dark matter?

Gravitational freeze-in

[Garny, Sandora, Sloth '16; Bernal, Dutra, Mambrini, Olive, Peloso, Pierre ;... ...; Chiu, Hong, Wang '22]

$$M \frac{n_{\rm DM}}{s} \big|_{\rm today} = 0.4 \,\mathrm{eV}$$

conformally coupled dark matter?

Gravitational freeze-in

[Garny, Sandora, Sloth '16; Bernal, Dutra, Mambrini, Olive, Peloso, Pierre ;... ...; Chiu, Hong, Wang '22]

Gravitational Particle Production

[Ford '76 Chung, Kolb, Riotto '98 Chung, Kolb, Riotto, Senatore; Ema, Nakayama, Tang...]

$$M \frac{n_{\rm DM}}{s} \big|_{\rm today} = 0.4 \,\mathrm{eV}$$

conformally coupled dark matter?

Gravitational freeze-in

[Garny, Sandora, Sloth '16; Bernal, Dutra, Mambrini, Olive, Peloso, Pierre ;... ...; Chiu, Hong, Wang '22]

Gravitational Particle Production

[Ford '76 Chung, Kolb, Riotto '98 Chung, Kolb, Riotto, Senatore; Ema, Nakayama, Tang...]

Stochastic Gravitational Particle Production



[Maleknejad, Kopp'24]

# Gravitational freeze-in (GFI)

## Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma via graviton exchange

[Garny, Sandora, Sloth '16; ...; Chiu, Hong, Wang '22]

## Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma via graviton exchange

[Garny, Sandora, Sloth '16; ...; Chiu, Hong, Wang '22]

during standard cosmology the universe is reheated at high temperature graviton mediated annihilations of SM state can produce DM



## Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma via graviton exchange

[Garny, Sandora, Sloth '16; ...; Chiu, Hong, Wang '22]

during standard cosmology the universe is reheated at high temperature graviton mediated annihilations of SM state can produce DM



scattering happens at short distances, flat space computation

$$\frac{h_{\mu\nu}}{M_{
m pl}}T^{\mu\nu}$$

#### Production insensitive to the mass of DM

Freeze-in type of calculation: thermal cross-section mediated by gravitons



$$\mathcal{A} = \frac{1}{M_{\rm Pl}^2 s} \left( T_{\mu\nu}^{\rm SM} T_{\alpha\beta}^{\rm DM} \eta^{\mu\alpha} \eta^{\nu\beta} - \frac{1}{2} T^{\rm SM} T^{\rm DM} \right)$$

- It is possible to compute explicitly case by case
- Exploiting conformal symmetry, derived general formula

## Generalized application to relativistic CFTs

by the optical theorem we just need to know

$$\int d\Phi_{\rm CFT} |\langle 0|\mathcal{O}|{\rm CFT}\rangle|^2 = 2{\rm Im}[i\langle \mathcal{O}\mathcal{O}\rangle]$$

## Generalized application to relativistic CFTs

by the optical theorem we just need to know

$$\int d\Phi_{\rm CFT} |\langle 0|\mathcal{O}|{\rm CFT}\rangle|^2 = 2{\rm Im}[i\langle \mathcal{O}\mathcal{O}\rangle]$$

in our case it's just fixed by the conformal symmetries and we just need the 2-point function of the stress-energy tensor

$$\langle T_{\mu\nu}(x)T_{\rho\sigma}(0)\rangle = \frac{c}{4\pi^2}P_{\mu\nu\sigma\rho}\frac{1}{x^8}$$



## Thermal cross section

$$\langle \sigma v \rangle = c_{\rm SM} c_{\rm DM} \frac{3}{2560\pi} \frac{T^2}{M_{\rm Pl}^4}$$

### Thermal cross section

$$\langle \sigma v \rangle = c_{\rm SM} c_{\rm DM} \frac{3}{2560\pi} \frac{T^2}{M_{\rm Pl}^4}$$

**universal formula** for all CFTs applicable to fermions, gauge fields, RS...

$$c_{1/2} = 4$$
  $c_1 = 16$ 

#### Thermal cross section

$$\langle \sigma v \rangle = c_{\rm SM} c_{\rm DM} \frac{3}{2560\pi} \frac{T^2}{M_{\rm Pl}^4}$$

**universal formula** for all CFTs applicable to fermions, gauge fields, RS...

$$c_{1/2} = 4$$
  $c_1 = 16$ 

with this easy to solve the Boltzmann equation

$$\frac{dY_{\rm DM}}{dT} = \frac{\langle \sigma v \rangle s(T)}{HT} (Y_{\rm DM}^2 - Y_{\rm eq}^2) \qquad Y_{\rm DM} \sim T^3 \times (\frac{T_R}{M_{\rm Pl}})^3$$

$$M|_{\mathrm{DM}} pprox rac{10^6 \,\mathrm{GeV}}{c_{\mathrm{DM}}} \left(rac{10^{15} \mathrm{GeV}}{T_R}
ight)^3$$

sharp prediction just based on the mass and central charge

$$M|_{\mathrm{DM}} pprox rac{10^6 \,\mathrm{GeV}}{c_{\mathrm{DM}}} \left( rac{10^{15} \mathrm{GeV}}{T_R} 
ight)^3$$

Strongly sensitive to reheating temperature

$$M|_{\mathrm{DM}} pprox \frac{10^6 \,\mathrm{GeV}}{c_{\mathrm{DM}}} \left(\frac{10^{15} \mathrm{GeV}}{T_R}\right)^3$$

- Strongly sensitive to reheating temperature
- Very heavy DM, very small numerical density

$$M|_{\mathrm{DM}} pprox \frac{10^6 \,\mathrm{GeV}}{c_{\mathrm{DM}}} \left(\frac{10^{15} \mathrm{GeV}}{T_R}\right)^3$$

- Strongly sensitive to reheating temperature
- Very heavy DM, very small numerical density
- Applicable to glueball DM (viable scenario)

$$M|_{\mathrm{DM}} pprox \frac{10^6 \,\mathrm{GeV}}{c_{\mathrm{DM}}} \left(\frac{10^{15} \mathrm{GeV}}{T_R}\right)^3$$

- Strongly sensitive to reheating temperature
- Very heavy DM, very small numerical density
- Applicable to glueball DM (viable scenario)
- No visible signals...

[see also Andrew Long and Rocky Kolb **review** '23]

# Gravitational Particle Production (GPP)

### Particle Production

need time dependence



initial state has overlap with excited states of new Hamiltonian

## Hamiltonian with time dependence

Particle production can be understood in QM

$$\hat{H}(\tau) = \frac{1}{2}\hat{p}^2 + \frac{1}{2}\omega^2(\tau)\hat{x}^2$$
  $\hat{x} = v(\tau)a + v(\tau)^*a^{\dagger}$ 

## Hamiltonian with time dependence

Particle production can be understood in QM

$$\hat{H}(\tau) = \frac{1}{2}\hat{p}^2 + \frac{1}{2}\omega^2(\tau)\hat{x}^2$$
  $\hat{x} = v(\tau)a + v(\tau)^*a^{\dagger}$ 

The **mode function** satisfies at all times

$$\ddot{v} + \omega^2(\tau)v = 0 \qquad \dot{v}v^* - \dot{v}^*v = -i$$

## Hamiltonian with time dependence

Particle production can be understood in QM

$$\hat{H}(\tau) = \frac{1}{2}\hat{p}^2 + \frac{1}{2}\omega^2(\tau)\hat{x}^2$$
  $\hat{x} = v(\tau)a + v(\tau)^*a^{\dagger}$ 

The **mode function** satisfies at all times

$$\ddot{v} + \omega^2(\tau)v = 0 \qquad \dot{v}v^* - \dot{v}^*v = -i$$

for constant frequency, only positive frequency solutions are allowed

$$v_0 = \frac{1}{\sqrt{2\omega}} e^{-i\omega\tau} \qquad a|0\rangle = 0$$

we assume the initial state is the **vacuum** of the **initial** Hamiltonian

# Explicit examples (important for later)

Changes of frequency will give particle production





## Explicit examples (important for later)

Changes of frequency will give particle production



in the far future the solution is

$$v = \frac{\alpha(\tau)}{\sqrt{2\omega(\tau)}} e^{-i\omega(\tau)\tau} + \frac{\beta(\tau)}{\sqrt{2\omega(\tau)}} e^{+i\omega(\tau)\tau} \qquad |\alpha|^2 - |\beta|^2 = 1$$

## Explicit examples (important for later)

Changes of frequency will give particle production



in the far future the solution is

$$v = \frac{\alpha(\tau)}{\sqrt{2\omega(\tau)}} e^{-i\omega(\tau)\tau} + \frac{\beta(\tau)}{\sqrt{2\omega(\tau)}} e^{+i\omega(\tau)\tau} \qquad |\alpha|^2 - |\beta|^2 = 1$$

**Bogoliubov** coefficient related to the number of particles produced

In terms of the new creation/annihilation operators

occupation number =  $|\beta|^2$ 

## Explicit examples (important for later)

Changes of frequency will give particle production





[Ford '76]

in QFT slighlty more complicated, but the idea is the same [at work also for **asymptotically** slow varying frequencies]

[Chung, Kolb, Riotto;....; Long, Kolb]

A consequence of QFT on curved space: Gravitational Particle Production

[Chung, Kolb, Riotto;....; Long, Kolb]

#### A consequence of QFT on curved space: Gravitational Particle Production

Consider a massive field conformally coupled to the metric

by **acting** with a Weyl rescaling:

$$\chi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ v_k(\tau) e^{+i\vec{k}\cdot\vec{x}} a_k + \dots \right] \qquad a_k|0\rangle = 0$$

[Chung, Kolb, Riotto;....; Long, Kolb]

#### A consequence of QFT on curved space: Gravitational Particle Production

Consider a massive field conformally coupled to the metric

by **acting** with a Weyl rescaling:

$$\chi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ v_k(\tau) e^{+i\vec{k}\cdot\vec{x}} a_k + \dots \right] \qquad a_k |0\rangle = 0$$

$$\partial_{\tau}^{2} v_{k} + k^{2} v_{k} + a^{2}(\tau) M^{2} v_{k} = 0$$

we quantize as in flat space at minus infinity!

Bunch-Davies type of initial conditions for k>>aM only positive frequency

Standard GPP needs **mass** term

#### Standard GPP needs **mass** term

Let us consider a conformal scalar (=1/2 Weyl) with mass M

$$\partial_{\tau}^{2} v_{k} + k^{2} v_{k} + a^{2}(\tau) M^{2} v_{k} = 0 \qquad \omega^{2} = k^{2} + a^{2} M^{2}$$

#### Standard GPP needs mass term

Let us consider a conformal scalar (=1/2 Weyl) with mass M

$$\partial_{\tau}^{2} v_{k} + k^{2} v_{k} + a^{2}(\tau) M^{2} v_{k} = 0 \qquad \omega^{2} = k^{2} + a^{2} M^{2}$$

■ Production happens when time-dependence is maximal:

$$k/a_M \sim H \sim M$$
  $k_M \sim a_M M$ 

#### Standard GPP needs mass term

Let us consider a conformal scalar (=1/2 Weyl) with mass M

$$\partial_{\tau}^{2} v_{k} + k^{2} v_{k} + a^{2}(\tau) M^{2} v_{k} = 0 \qquad \omega^{2} = k^{2} + a^{2} M^{2}$$

■ Production happens when time-dependence is maximal:

$$k/a_M \sim H \sim M$$
  $k_M \sim a_M M$ 

At this time largest contribution to negative frequency:

$$v_k = \frac{\alpha_k(\tau)}{\sqrt{2\omega}} e^{-i\int \omega d\tau'} + \frac{\beta_k(\tau)}{\sqrt{2\omega}} e^{+i\int \omega d\tau'}$$

#### Standard GPP needs mass term

Let us consider a conformal scalar (=1/2 Weyl) with mass M

$$\partial_{\tau}^{2} v_{k} + k^{2} v_{k} + a^{2}(\tau) M^{2} v_{k} = 0 \qquad \omega^{2} = k^{2} + a^{2} M^{2}$$

■ Production happens when time-dependence is maximal:

$$k/a_M \sim H \sim M$$
  $k_M \sim a_M M$ 

At this time largest contribution to negative frequency:

$$v_k = \frac{\alpha_k(\tau)}{\sqrt{2\omega}} e^{-i\int \omega d\tau'} + \frac{\beta_k(\tau)}{\sqrt{2\omega}} e^{+i\int \omega d\tau'}$$

[here asymptotically adiabatic evolution]

The **number** and **energy** densities are computed as follows

$$\frac{d\rho}{d\log k} = \frac{\omega_k k^3}{2\pi^2} |\beta_{\vec{k}}|^2, \quad \frac{dn}{d\log k} = \frac{k^3}{2\pi^2} |\beta_{\vec{k}}|^2$$

The **number** and **energy** densities are computed as follows

$$\frac{d\rho}{d\log k} = \frac{\omega_k k^3}{2\pi^2} |\beta_{\vec{k}}|^2, \quad \frac{dn}{d\log k} = \frac{k^3}{2\pi^2} |\beta_{\vec{k}}|^2$$



$$\Omega_{\rm DM}|_{\rm GPP} \approx 10^{-2} \frac{M \, k_M^3}{3M_{\rm Pl}^2 H_0^2}$$

The **number** and **energy** densities are computed as follows

$$\frac{d\rho}{d\log k} = \frac{\omega_k k^3}{2\pi^2} |\beta_{\vec{k}}|^2, \quad \frac{dn}{d\log k} = \frac{k^3}{2\pi^2} |\beta_{\vec{k}}|^2$$



$$\Omega_{\rm DM}|_{\rm GPP} \approx 10^{-2} \frac{M \, k_M^3}{3M_{\rm Pl}^2 H_0^2}$$

Abundance strongly suppressed by M, Weyl invariance forbids production!

Is there a way out?

#### DM abundance: GFI + GPP



Stochastic Gravitational Particle Production



CFTs do **not** see the time dependence of FRW\*

Production of conformally coupled matter goes to **zero** with  $M \to 0$ 

CFTs do **not** see the time dependence of FRW\*

Production of conformally coupled matter goes to **zero** with  $M \to 0$ 

Let us consider the case of a **massless** Weyl fermion

CFTs do **not** see the time dependence of FRW\*

Production of conformally coupled matter goes to **zero** with  $M \to 0$ 

Let us consider the case of a **massless** Weyl fermion

applying a Weyl transformation (field redefinition)

$$g_{\mu\nu} = a^2 \eta_{\mu\nu} \qquad \psi \to a^{-3/2} \psi$$

CFTs do **not** see the time dependence of FRW\*

Production of conformally coupled matter goes to **zero** with  $M \to 0$ 

Let us consider the case of a **massless** Weyl fermion

applying a Weyl transformation (field redefinition)

$$g_{\mu\nu} = a^2 \eta_{\mu\nu} \qquad \psi \to a^{-3/2} \psi$$

metric completely disappears from the action of a Weyl fermion

$$\int d^4x\,i\psi^\daggerar\sigma^\mu\partial_\mu\psi$$
 as in flat space! no GPP!

# Fluctuations breaks Weyl invariance

[PLANCK]



$$\Delta_{\zeta}|_{\rm CMB} \sim 10^{-9}$$

generated during inflation

Dynamical gravity breaks Weyl invariance  $M_{\mathrm{Pl}}^2R$ 

Dynamical gravity breaks Weyl invariance  $M_{\mathrm{Pl}}^2R$ 

**Fluctuations** on top of FRW background will break Weyl invariance

Dynamical gravity breaks Weyl invariance  $M_{\mathrm{Pl}}^2R$ 

Fluctuations on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

Dynamical gravity breaks Weyl invariance  $M_{\mathrm{Pl}}^2R$ 

**Fluctuations** on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

Curvature (scalar) perturbations generated during inflation

Dynamical gravity breaks Weyl invariance  $M_{
m Pl}^2R$ 

**Fluctuations** on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

- Curvature (scalar) perturbations generated during inflation
- Gravitational waves produced during inflation

Dynamical gravity breaks Weyl invariance  $M_{
m Pl}^2R$ 

Fluctuations on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

- Curvature (scalar) perturbations generated during inflation
- Gravitational waves produced during inflation

are they enough to produce DM? even conformally coupled DM?

Dynamical gravity breaks Weyl invariance  $M_{
m Pl}^2R$ 

Fluctuations on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

- Curvature (scalar) perturbations generated during inflation
- Gravitational waves produced during inflation

are they enough to produce DM? even conformally coupled DM?

[for the case of GWs generated at a phase transition, see **Maleknejad & Kopp '24**]

In single field inflation, curvature perturbations constant on super-horizon scales

In single field inflation, curvature perturbations constant on super-horizon scales



$$\langle \zeta_q \zeta_{q'}^* \rangle = \frac{2\pi^2}{q^3} \delta^{(3)}(\vec{q} - \vec{q}') \Delta_{\zeta}(q)$$

$$\Delta_{\zeta}|_{\mathrm{CMB}} \sim \frac{1}{\epsilon} \frac{H_I^2}{M_{\mathrm{Pl}}^2}$$

at shorter scales can be different!

In single field inflation, curvature perturbations constant on super-horizon scales



$$\langle \zeta_q \zeta_{q'}^* \rangle = \frac{2\pi^2}{q^3} \delta^{(3)}(\vec{q} - \vec{q}') \Delta_{\zeta}(q)$$

$$\Delta_{\zeta}|_{\rm CMB} \sim \frac{1}{\epsilon} \frac{H_I^2}{M_{\rm Pl}^2}$$

at shorter scales can be different!

in conformal-newtonian gauge the metric with perturbations is

$$ds^{2} = a^{2}d\tau^{2}[1 + 2\Phi(\tau, \vec{x})] - a^{2}dx^{2}[1 - 2\Psi(\tau, \vec{x})]$$

In single field inflation, curvature perturbations constant on super-horizon scales



$$\langle \zeta_q \zeta_{q'}^* \rangle = \frac{2\pi^2}{q^3} \delta^{(3)}(\vec{q} - \vec{q}') \Delta_{\zeta}(q)$$

$$\Delta_{\zeta}|_{\rm CMB} \sim \frac{1}{\epsilon} \frac{H_I^2}{M_{\rm Pl}^2}$$

at shorter scales can be different!

in conformal-newtonian gauge the metric with perturbations is

$$ds^{2} = a^{2}d\tau^{2}[1 + 2\Phi(\tau, \vec{x})] - a^{2}dx^{2}[1 - 2\Psi(\tau, \vec{x})]$$

 $\Phi,\ \Psi$  are matched to the super-horizon value of  $\ \zeta$ 

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

T is a **transfer function** fixed by standard cosmology

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

T is a **transfer function** fixed by standard cosmology

Negligible during inflation

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

T is a **transfer function** fixed by standard cosmology

- Negligible during inflation
- Constant super-horizon

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

T is a **transfer function** fixed by standard cosmology

- Negligible during inflation
- Constant super-horizon
- Damped oscillations in radiation

### The case of curvature perturbations

in absence of anisotropic stress, we write the following expression\*

$$\Phi = \Psi = T(q, \tau)\zeta(q)$$

T is a **transfer function** fixed by standard cosmology



<sup>\*</sup> Fourier space calculation

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

in vacuum (away from sources) the mode function is

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

• Quantization enforces  $|\alpha_k|^2 + |\beta_k|^2 = 1$ 

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

- Quantization enforces  $|\alpha_k|^2 + |\beta_k|^2 = 1$
- Boundary condition in the past  $|\alpha_k(-\infty)| = 1$

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

- Quantization enforces  $|\alpha_k|^2 + |\beta_k|^2 = 1$
- Boundary condition in the past  $|\alpha_k(-\infty)| = 1$
- If a source is active for a **finite time**, we can have  $|\beta_k(+\infty)| \neq 0$

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

- Quantization enforces  $|\alpha_k|^2 + |\beta_k|^2 = 1$
- Boundary condition in the past  $|\alpha_k(-\infty)| = 1$
- If a source is active for a **finite time**, we can have  $|\beta_k(+\infty)| \neq 0$
- The field is still massless, frequency is just k

$$\psi(\tau, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left[ \psi_{\vec{k}}(\tau) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}} + \dots \right]$$

in vacuum (away from sources) the mode function is

$$\psi_k(\tau) = \frac{\xi_-}{\sqrt{2}} \alpha_k e^{-ik\tau} + \frac{\xi_+}{\sqrt{2}} \beta_k e^{ik\tau} \qquad \vec{\sigma} \cdot \vec{k} \xi_{\pm} = \pm k \xi_{\pm}$$

- Quantization enforces  $|\alpha_k|^2 + |\beta_k|^2 = 1$
- Boundary condition in the past  $|\alpha_k(-\infty)| = 1$
- If a source is active for a **finite time**, we can have  $|\beta_k(+\infty)| \neq 0$
- The field is still massless, frequency is just k

negative frequency also for k>>aM

we don't need the mass



Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

$$i\bar{\sigma}^{\mu}\partial_{\mu}\psi = i(2\Psi\dot{\psi} - \frac{1}{2}(\nabla\Psi)\cdot(\vec{\sigma}\psi) + \frac{3}{2}\dot{\Psi}\psi)$$

Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

$$i\bar{\sigma}^{\mu}\partial_{\mu}\psi = i(2\Psi\dot{\psi} - \frac{1}{2}(\nabla\Psi)\cdot(\vec{\sigma}\psi) + \frac{3}{2}\dot{\Psi}\psi)$$

RHS: source of Weyl breaking, relevant for particle production

Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

$$i\bar{\sigma}^{\mu}\partial_{\mu}\psi = i(2\Psi\dot{\psi} - \frac{1}{2}(\nabla\Psi)\cdot(\vec{\sigma}\psi) + \frac{3}{2}\dot{\Psi}\psi)$$

- RHS: source of Weyl breaking, relevant for particle production
- Equation linear in the field (quadratic hamiltonian)

#### Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

$$i\bar{\sigma}^{\mu}\partial_{\mu}\psi = i(2\Psi\dot{\psi} - \frac{1}{2}(\nabla\Psi)\cdot(\vec{\sigma}\psi) + \frac{3}{2}\dot{\Psi}\psi)$$

- RHS: source of Weyl breaking, relevant for particle production
- Equation linear in the field (quadratic hamiltonian)
- **Idea**: apply Bogoliubov-type of calculations (translations broken..)

Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

$$i\bar{\sigma}^{\mu}\partial_{\mu}\psi = i(2\Psi\dot{\psi} - \frac{1}{2}(\nabla\Psi)\cdot(\vec{\sigma}\psi) + \frac{3}{2}\dot{\Psi}\psi)$$

- RHS: source of Weyl breaking, relevant for particle production
- Equation linear in the field (quadratic hamiltonian)
- **Idea**: apply Bogoliubov-type of calculations (translations broken..)

"Stochastic Bogoliubov Particle Production"

We have scrutinized many cases (spin<=1)

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)

all conformally coupled fields satisfy a linear equation

$$\Box \psi = J \cdot \psi$$

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)

all conformally coupled fields satisfy a linear equation

$$\Box \psi = J \cdot \psi$$

J is a differential operator depending on scalar/tensor fluctuations

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)

all conformally coupled fields satisfy a linear equation

$$\Box \psi = J \cdot \psi$$

J is a differential operator depending on scalar/tensor fluctuations

J is zero in the far past and future, non zero and known in between!

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)

all conformally coupled fields satisfy a linear equation

$$\Box \psi = J \cdot \psi$$

J is a differential operator depending on scalar/tensor fluctuations

- J is zero in the far past and future, non zero and known in between!
- Solution: a combination of positive/negative frequency k

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)

all conformally coupled fields satisfy a linear equation

$$\Box \psi = J \cdot \psi$$

J is a differential operator depending on scalar/tensor fluctuations

- J is zero in the far past and future, non zero and known in between!
- Solution: a combination of positive/negative frequency k
- Technically different from the massive case

$$\Box \psi = J \cdot \psi$$

We solve it perturbatively in the source:

$$\Box \psi = J \cdot \psi$$

We solve it perturbatively in the source:

■ Initial state:  $\psi_0 \sim \xi_- e^{-ik\tau}$ 

$$\Box \psi = J \cdot \psi$$

We solve it perturbatively in the source:

- Initial state:  $\psi_0 \sim \xi_- e^{-ik\tau}$
- It gives a known source  $J_0 \equiv J \cdot \psi_0$

$$\Box \psi = J \cdot \psi$$

We solve it perturbatively in the source:

- Initial state:  $\psi_0 \sim \xi_- e^{-ik\tau}$
- It gives a known source  $J_0 \equiv J \cdot \psi_0$

First non-trivial effect can be read-out with retarded Greens' function\*

$$\psi(\vec{k},\tau) = \int d\tau' G_R(\tau - \tau') J_0(\tau')$$

$$\Box \psi = J \cdot \psi$$

We solve it perturbatively in the source:

- Initial state:  $\psi_0 \sim \xi_- e^{-ik\tau}$
- It gives a known source  $J_0 \equiv J \cdot \psi_0$

First non-trivial effect can be read-out with retarded Greens' function\*

$$\psi(\vec{k},\tau) = \int d\tau' G_R(\tau - \tau') J_0(\tau')$$

we just **project** onto the Bogoliubov coefficient at **infinity** 

Extracting the coefficient is easy (same frequency)

$$\beta_k(\tau) \sim \int_{-\infty}^{\tau} d\tau' e^{-i(k+\omega)\tau'} \xi_{\vec{k},+}^{\dagger} J_0 \qquad \vec{\omega} = \vec{k} - \vec{q}$$

Extracting the coefficient is easy (same frequency)

$$\beta_k(\tau) \sim \int_{-\infty}^{\tau} d\tau' e^{-i(k+\omega)\tau'} \xi_{\vec{k},+}^{\dagger} J_0 \qquad \vec{\omega} = \vec{k} - \vec{q}$$

The source is **linear** in  $\zeta(\vec{q})T(\vec{q},\tau)$ 

Extracting the coefficient is easy (same frequency)

$$\beta_k(\tau) \sim \int_{-\infty}^{\tau} d\tau' e^{-i(k+\omega)\tau'} \xi_{\vec{k},+}^{\dagger} J_0 \qquad \vec{\omega} = \vec{k} - \vec{q}$$

The source is **linear** in  $\zeta(\vec{q})T(\vec{q},\tau)$ 

Bogoliubov coefficient zero on average

Extracting the coefficient is easy (same frequency)

$$\beta_k(\tau) \sim \int_{-\infty}^{\tau} d\tau' e^{-i(k+\omega)\tau'} \xi_{\vec{k},+}^{\dagger} J_0 \qquad \vec{\omega} = \vec{k} - \vec{q}$$

The source is **linear** in  $\zeta(\vec{q})T(\vec{q},\tau)$ 

- Bogoliubov coefficient zero on average
- Need to compute  $\langle |\beta_k|^2 \rangle$

Extracting the coefficient is easy (same frequency)

$$\beta_k(\tau) \sim \int_{-\infty}^{\tau} d\tau' e^{-i(k+\omega)\tau'} \xi_{\vec{k},+}^{\dagger} J_0 \qquad \vec{\omega} = \vec{k} - \vec{q}$$

The source is **linear** in  $\zeta(\vec{q})T(\vec{q},\tau)$ 

- Bogoliubov coefficient zero on average
- Need to compute  $\langle |\beta_k|^2 \rangle$

$$\langle |\beta_k|^2 \rangle = \int d\tau \int d\tau' \int \frac{d^3q}{(2\pi)^3} e^{-i(k+\omega)(\tau-\tau')} \times \langle \Psi_{\vec{q}}(\tau) \Psi_{\vec{q}}^*(\tau') \rangle_{\delta} \mathcal{K}[k, q, \cos \theta]$$

The abundance of particles today is

$$\frac{dn}{d\log k} = \frac{k^3}{4\pi^2} \int \frac{d\cos\theta dq}{q} \Delta_{\zeta}(q) |\mathcal{I}(q, k+\omega)|^2 \mathcal{K}[k, q, \cos\theta]$$

The abundance of particles today is

$$\frac{dn}{d\log k} = \frac{k^3}{4\pi^2} \int \frac{d\cos\theta dq}{q} \Delta_{\zeta}(q) |\mathcal{I}(q, k+\omega)|^2 \mathcal{K}[k, q, \cos\theta]$$

• Kernel **K** depends on the spin [0,1/2,1]

The abundance of particles today is

$$\frac{dn}{d\log k} = \frac{k^3}{4\pi^2} \int \frac{d\cos\theta dq}{q} \Delta_{\zeta}(q) |\mathcal{I}(q, k+\omega)|^2 \mathcal{K}[k, q, \cos\theta]$$

- Kernel **K** depends on the spin [0,1/2,1]
- **I** = Fourier transform of transfer function in k+w [known]

The abundance of particles today is

$$\frac{dn}{d\log k} = \frac{k^3}{4\pi^2} \int \frac{d\cos\theta dq}{q} \Delta_{\zeta}(q) |\mathcal{I}(q, k+\omega)|^2 \mathcal{K}[k, q, \cos\theta]$$

- Kernel **K** depends on the spin [0,1/2,1]
- **I** = Fourier transform of transfer function in k+w [known]
- Scale set by curvature **power spectrum** generated during inflation

The abundance of particles today is

$$\frac{dn}{d\log k} = \frac{k^3}{4\pi^2} \int \frac{d\cos\theta dq}{q} \Delta_{\zeta}(q) |\mathcal{I}(q, k+\omega)|^2 \mathcal{K}[k, q, \cos\theta]$$

- Kernel **K** depends on the spin [0,1/2,1]
- **I** = Fourier transform of transfer function in k+w [known]
- Scale set by curvature **power spectrum** generated during inflation

The abundance of particles today is found upon an integral in wavenumber [all integrals converge, and have a good flat space limit]

### DM from curvature perturbations

In the case of **fermion DM** 

$$n = A \int \frac{dq}{q} q^3 \Delta_{\zeta}(q) .$$

In the case of **fermion DM** 

$$n = A \int \frac{dq}{q} q^3 \Delta_{\zeta}(q) .$$

The inflationary power spectrum has a finite support: the integral is **convergent** 

In the case of **fermion DM** 

$$n = A \int \frac{dq}{q} q^3 \Delta_{\zeta}(q).$$

The inflationary power spectrum has a finite support: the integral is **convergent** 

Results depends on the shape/amplitude of power spectrum

In the case of **fermion DM** 

$$n = A \int \frac{dq}{q} q^3 \Delta_{\zeta}(q) .$$

The inflationary power spectrum has a finite support: the integral is **convergent** 

- Results depends on the shape/amplitude of power spectrum
- For a peaked spectrum at q\* the DM abundance is reproduced:

$$q_* \approx 1.23 \times 10^{-7} \text{eV} \left(\frac{10^6 \,\text{GeV}}{M}\right)^{\frac{1}{3}} \left(\frac{0.001}{\Delta_{\zeta}(q_*)}\right)^{\frac{1}{3}} \left(\frac{0.1}{A}\right)^{\frac{1}{3}}$$

Need a **sizable** primordial power spectrum

Related to ultra-slow roll scenarios (PBHs formation)

- Related to ultra-slow roll scenarios (PBHs formation)
- Need to happen at the end of inflation

- Related to ultra-slow roll scenarios (PBHs formation)
- Need to happen at the end of inflation
- **Gravity waves** at second order in the curvature

- Related to ultra-slow roll scenarios (PBHs formation)
- Need to happen at the end of inflation
- **Gravity waves** at second order in the curvature

$$\Omega_{\rm DM}|_{\rm stochastic} = \frac{A}{2\pi^2} \frac{M q_*^3}{3M_{\rm Pl}^2 H_0^2} \Delta_{\zeta}(q_*)$$

#### Need a **sizable** primordial power spectrum

- Related to ultra-slow roll scenarios (PBHs formation)
- Need to happen at the end of inflation
- **Gravity waves** at second order in the curvature

$$\Omega_{\rm DM}|_{\rm stochastic} = \frac{A}{2\pi^2} \frac{M q_*^3}{3M_{\rm Pl}^2 H_0^2} \Delta_{\zeta}(q_*)$$

inflationary fluctuations —> particle production

# yet another alternative derivation?

We are producing CFTs: what about the approach with **in-in** formalism?

$$\frac{h_{\mu\nu}}{M_{\rm pl}}T^{\mu\nu}$$
 coupling to fluctuations in FRW background

### yet another alternative derivation?

We are producing CFTs: what about the approach with in-in formalism?

$$\frac{h_{\mu\nu}}{M_{\rm pl}}T^{\mu\nu}$$
 coupling to fluctuations in FRW background

in-in formalism immediately gives the following structure

$$\langle T^0_0(\tau) \rangle \sim \int \int \langle hh \rangle \langle T^0_0(\tau)TT \rangle$$

### yet another alternative derivation?

We are producing CFTs: what about the approach with in-in formalism?

$$\frac{h_{\mu\nu}}{M_{\rm pl}}T^{\mu\nu}$$
 coupling to fluctuations in FRW background

in-in formalism immediately gives the following structure

$$\langle T^0_0(\tau) \rangle \sim \int \int \langle hh \rangle \langle T^0_0(\tau)TT \rangle$$

energy density computable by knowing **stress-energy tensor 3-p function** and the power spectrum of all fluctuations h

need more thoughts about this, but looks interesting/general





# DM from gravitationally coupled sectors

Gravitational freeze-in

$$\Omega_{\rm DM}|_{\rm GFI} = 10^{-5} \frac{Mk_R^3}{3H_0^2 M_{\rm Pl}^2}$$

invisible

### DM from gravitationally coupled sectors

Gravitational freeze-in

$$\Omega_{\rm DM}|_{\rm GFI} = 10^{-5} \frac{Mk_R^3}{3H_0^2 M_{\rm Pl}^2}$$

invisible

Gravitational Particle Production

$$\Omega_{\rm DM}|_{\rm GPP} \approx 10^{-2} \frac{M k_M^3}{3M_{\rm Pl}^2 H_0^2},$$

invisible

### DM from gravitationally coupled sectors

Gravitational freeze-in

$$\Omega_{\rm DM}|_{\rm GFI} = 10^{-5} \frac{Mk_R^3}{3H_0^2 M_{\rm Pl}^2}$$

invisible

Gravitational Particle Production

$$\Omega_{\rm DM}|_{\rm GPP} \approx 10^{-2} \frac{M k_M^3}{3M_{\rm Pl}^2 H_0^2},$$

invisible

Stochastic Gravitational Particle Production

$$\Omega_{\rm DM}|_{\rm stochastic} = \frac{A}{2\pi^2} \frac{M q_*^3}{3M_{\rm Pl}^2 H_0^2} \Delta_{\zeta}(q_*)$$

secondary GWs/PBHs non-trivial inflation needed

### Outlook



the possibility that DM is only gravitationally coupled to us is both concerning and compelling

#### Outlook



the possibility that DM is only gravitationally coupled to us is both concerning and compelling

# Thank you for your attention!

and thanks for the warm hospitality!