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In this talk I'll try to answer the following question:

How dark can be the DM?<

in recent times this question has often shown up in conversations
with my collaborator Michele Redi




I will assume DM is only gravitationally coupled to us*
and see how far we can progress




I will assume DM is only gravitationally coupled to us*
and see how far we can progress

everything become very difficult buying this assumption
what about the abundance?®

*a bit conservative, but it is what data are telling us



A real challenge: initial production

dark sector is initially empty, we focus on the ‘jump start’
provided by the gravitational coupling to the SM background




A real challenge: initial production

dark sector is initially empty, we focus on the ‘jump start’
provided by the gravitational coupling to the SM background

- @




A real challenge: initial production

dark sector is initially empty, we focus on the ‘jump start’
provided by the gravitational coupling to the SM background

- @

Sector can have dynamics after it’s produced (still secluded)




A real challenge: initial production

dark sector is initially empty, we focus on the ‘jump start’
provided by the gravitational coupling to the SM background

- @

Sector can have dynamics after it’s produced (still secluded)

Focus on model independent/unavoidable sources of energy




A real challenge: initial production

dark sector is initially empty, we focus on the ‘jump start’
provided by the gravitational coupling to the SM background

- @

Sector can have dynamics after it’s produced (still secluded)

Focus on model independent/unavoidable sources of energy

Focus on particle DM, not discussing PBHSs
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An anticipation

two main sources of energy from the SM considered so far

The SM is a hot thermal plasma: can we get some energy from it?

f&\ PSM ™ T4 freeze-in through gravity

The FRW background breaks time translation: can this energy
non-conservation be used for the dark sector?

rﬂo\ d82 — CL2 (7‘) (d7'2 — dx2) particle production in curved space
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I will exploit only the cosmological evolution
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I will exploit only the cosmological evolution
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I will exploit only the cosmological evolution

inflation radiation
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comoving lenghts — 1/k

I will exploit only the cosmological evolution

inflation radiation
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production needs to happen in the ‘white area’
don’t want to spoil BBN/REC nor the adiabatic fluctuations




comoving lenghts — 1/k

I will exploit only the cosmological evolution
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production needs to happen in the ‘white area’
don’t want to spoil BBN/REC nor the adiabatic fluctuations
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Where/when dark sectors can be produced?

NS

loga

comoving lenghts — 1/k

Secluded dark sectors can be produced:
At large temperatures T

At large physical wavenumbers k/a

At large Hubble values

‘jump start’ won’t give much energy budget —> DM heavy

eventually we are sengitive to the end of inflation/start of reheating




Hey, look!

I can have
renormalizable
interactions
with the SM!

seclusion can be difficult to achieve
if all terms allowed by symmetry are included
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Rules of the game

I am interested in secluded and initially empty dark sectors

/ /=g Lort s imfinton + / =g on + M2, / By =GR

defined by the above interactions (and nothing more)

© Inflaton reheats only the SM

© No energy from self-interactions (e.g. no misalignement, system in
vacuum state...)




Accidental seclusion

Seclusion is a tough requirement

ODaniO
/ By =g(Law + Lo+ —oRM)

Pl




Accidental seclusion

Seclusion is a tough requirement

ODaniO
/ dhoy/=g( Lo + Lo + R

Pl

how to avoid marginal/relevant coupling to SM?

Dark sectors with fermion DM
Dark sectors with gauge symmetries
Dark sectors with self-interactions
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Archetype of secluded DM sectors - I

= Dark sector: pure Yang-Mills

2
G/ﬂ/ confinement gives glueball DM
4¢?
= Dark sector: free fermion <——— mostly today!
- M .
Z¢7M Duw e 7 (ww € h.c.) fermionic DM
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Archetype of secluded DM sectors - 11

I believe that the prototype of secluded dark sectors are dark CFTs *
or less fancy: conformally coupled matter

— M mass scale of DM

<

Energy/Temperature/Wavenumber

at very high scales production can be insensitive to M

*need to have a symmetry that stabilizes DM or accidental stability
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Secluded DM originates from a dark CFT

dark CFTs are among the most secluded sectors

Tﬁi — 0 > Weyl invariant theory

Juv — 0? ()9, field — Q(x) Mield

No CFT production from de Sitter expansion

No massless fermion, no gauge fields production from FRW

This invariance is only lost when:
1. CFT approximation breaks down (Mass or running)
&. Gravity is dynamical: fluctuations on top of FRW

(production from the thermal plasma at work in the CFT limit)
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nNpMm

— 0.4eV conformally coupled dark matter?
S today

Gravitational freeze-in

[Garny, Sandora, Sloth ’16;
Bernal, Dutra, Mambrini, Olive, Peloso, Pierre ;...
...; Chiu, Hong, Wang '22]

Gravitational Particle Production
[Ford ‘76
Chung, Kolb, Riotto '98

Chung, Kolb, Riotto, Senatore;
Ema, Nakayama, Tang...]

Stochastic Gravitational Particle Production NEW

[Maleknejad ,Kopp '24]




Gravitational freeze-in
(GFID)

with Michele Redi and Hannah Tillim

JHEP 05 (2021) 010




Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma

via graviton exchange

[Garny, Sandora, Sloth ’16;
...; Chiu, Hong, Wang '22]




Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma

via graviton exchange

[Garny, Sandora, Sloth ’16;
...; Chiu, Hong, Wang '22]

during standard cosmology the universe is reheated at high temperature
graviton mediated annihilations of SM state can produce DM

°W@




Extracting energy from SM thermal bath

the idea is to extract energy from the SM thermal plasma

via graviton exchange
[Garny, Sandora, Sloth ’16;
...; Chiu, Hong, Wang '22]

during standard cosmology the universe is reheated at high temperature
graviton mediated annihilations of SM state can produce DM

°W@

scattering happens at short distances, flat space computation
M

T




Production insensitive to the mass of DM

Freeze-in type of calculation: thermal cross-section mediated by gravitons

SM DM
SM DM
A = 1 TSMTDM,’,}/MX,’,}l/ﬁ L lTSMTDM
iz s \ T Tap >

It is possible to compute explicitly case by case

Exploiting conformal symmetry, derived general formula
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Generalized application to relativistic CFTs

by the optical theorem we just need to know
/ 0D | (0]O|CFT) 2 = 2Imli(O0)]

in our case it’s just fixed by the conformal symmetries
and we just need the 2-point function of the stress-energy tensor

C 1
<TMV(4’7)TPO(O)> — 4—7T2Puwpﬁ
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Thermal cross section

3 717
25607 M,

<UU> — CSMCDM

universal formula for all CFTs
applicable to fermions, gauge fields, RS...

C1/2:4 61:16

with this easy to solve the Boltzmann equation

dYpm  (ov)s(T) . 5 5 3
aT T (YDm 3eq) DM
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DM mass from gravitational freeze-in

sharp prediction just based on the mass and central charge

N 106 GeV /10%GeV >
DM

M ~
CDM I'r

Strongly sensitive to reheating temperature
Very heavy DM, very small numerical density
Applicable to glueball DM (viable scenario)

No visible signals...




[see also Andrew Long and
Rocky Kolb review ‘23]

Gravitational Particle Production

(GPP)

with Michele Redi
JHEP 01 (2023) 085




Particle Production

need time dependence

WVinitial

initial state has overlap with excited states of new Hamiltonian
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Hamiltonian with time dependence

Particle production can be understood in QM

A 1 1
H(T) — 5 s + 5(,02 (7‘)£2 & =v(1)a + v(r)*a

The mode function satisfies at all times

i}+w2(7)v =0 ¥ — v = —i

for constant frequency, only positive frequency solutions are allowed

e—in a|0> — 0

we assume the initial state is the vacuum of the initial Hamiltonian
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Explicit examples (important for later)

Changes of frequency will give particle production

W f ()

—WwT

—lWT 5, e B, W

e

in the far future the solution is

OJ(T) e—iw(T)T 4 B(T) €—|—iw(7')7'
2w(T) 2w(T)

N =

a* 8" =1

Bogoliubov coefficient related to the number of particles produced

In terms of the new creation/annihilation operators

occupation number = |3|?




—WT

Explicit examples (important for later)

Changes of frequency will give particle production

W f ()
W ¢ W W
7_»
2 .
|5‘2 _ (w — wf)2 ’5‘2 _ (w2 — QQ) 81n2(QA7')
4wwf 4w292

[Ford ‘6]

in QFT slighlty more complicated, but the idea is the same
[at work also for asymptotically slow varying frequencies]
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Grayvitational Particle Production

Long, Kolb]
A consequence of QFT on curved space:

Gravitational Particle Production

Consider a massive field conformally coupled to the metric

by acting with a Weyl rescaling:

vk(’r)eﬂz'fak + ... ar|0) =0

(972_1]]{; + k%k + CLQ(T)MQUk =0

we quantize as in flat space at minus infinity!

Bunch-Davies type of initial conditions
for k>>alM only positive frequency
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GPP needs massive particles

Standard GPP needs mass term

Let us consider a conformal scalar (=1/2 Weyl) with mass M

({9,72_@]{ + k2?]k -+ &2 (T)MQUk =0 w? = k* + a*M?

Production happens when time-dependence is maximal:

k/aMNHNM kMNCLMM
At this time largest contribution to negative frequency:

g (7) e~ i fwdr’ | B (1) ptt [ wdr’

V1. —
" vV 2w \V 2w

[here asymptotically adiabatic evolution]
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Grayvitational Particle Production

The number and energy densities are computed as follows

3 3
dp  wgk B2 dn  k 8.2
dlogk  2n2 "k dlogk 2m2'"k
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Grayvitational Particle Production

The number and energy densities are computed as follows

dp wkkSW 2 dn  k? 8.2
dlogk 272 "k 7 dlogk 2m2"F
EHHH I T TTTTTT I T TTTTTT I T T TTTTT I I \\HH‘ I I \HHH§
= ‘ =
10-1 % minimal coupling \g
10-2% | %
10'3% : zk_s %
10~ _ conformal coupling x 10* | i
* M k3
o ’ © Qpumlgpp = 1077 M
SE | 4 9
e \ 3M2, H?
el ; % p1410
1078 = | -
10-92 | =
" ; a(n) at H(n)/M=0.01 MIH, =001 | %
E ay at H(py)/M=1 | 5
10 EHHH [ N [ N [ A i B [ \\HH} [ \HHH%
10°° 107 107 1072 107" L

k/kmax

Abundance strongly suppressed by M, Weyl invariance forbids production!
Is there a way out?




TR [GCV]

DM abundance: GFI + GPP

QGR >> .Q.Pp

oduction during radiation

102 10 10* 10° 10%° 10" 10% 10° 10' 10™ 10" 10" 10' 10"
M [GeV]




Stochastic Gravitational Particle Production

NEW

A
N\

with Raghuveer Garani and Michele Redi
2408.yyyyy + R40X.yyyyy
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An obstruction to produce CFTs from inflation

CFTs do not see the time dependence of FRW *

Production of conformally coupled matter goes to zero with NM — 0

Let us consider the case of a massless Weyl fermion

applying a Weyl transformation (field redefinition)

Juv — a277,uu Y — (1—3/2¢

metric completely disappears from the action of a Weyl fermion

/ d4:c i¢T5”8u¢ as in flat space! no GPP!

* no photon production during inflation




Fluctuations breaks Weyl invariance

[PLANCK]

4
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Gravitational fluctuations break Weyl invariance
Dynamical gravity breaks Weyl invariance M/ ]_:2,1 R

Fluctuations on top of FRW background will break Weyl invariance

Within the SM we have sources of fluctuations

Curvature (scalar) perturbations generated during inflation

Gravitational waves produced during inflation

are they enough to produce DM?
even conformally coupled DM*?

[for the case of GWs generated at a phase transition,
see Maleknejad & Kopp ’24 ]
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The case of curvature perturbations

In single field inflation,
curvature perturbations constant on super-horizon scales

@m—?ﬂw ~ ) Aclg)

1 H?

AC‘CMB ~ _W
Pl

at shorter scales can be different!

in conformal-newtonian gauge the metric with perturbations is

ds® = a*dr?[1 + 20(7, %)] — a’dz*[1 — 2U(7, 7))

(I), W are matched to the super-horizon value of C
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The case of curvature perturbations

in absence of anisotropic stress, we write the following expression *

® =V ="T(q,7)¢(q)

T is a transfer function fixed by standard cosmology

T(q,T)

Negligible during inflation
Constant super-horizon

Damped oscillations in radiation

* Fourier space calculation
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A bit more details on massless fermions

Y(T,T) = / (;i];g {@DE(T)eiE'faE + }

in vacuum (away from sources) the mode function is

£—|— 1kt

V(1) = ﬁake‘“” + e G kEL = +kEy

Quantization enforces |ay|® + 8] =1

Boundary condition in the past |ax(—o0)| =1
If a source is active for a finite time, we can have |3 (+00)| # 0

The field is still massless, frequency is just k

negative frequency also for k>>all
we don’t need the mass
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Weyl fermion in presence of scalar fluctuations

Let us neglect the mass of the fermions for the moment

Weyl equation in presence of scalar flucutations

3

iH Dy = (2 — (V) - (30) + )

RHS: source of Weyl breaking, relevant for particle production
Equation linear in the field (quadratic hamiltonian)

Idea: apply Bogoliubov-type of calculations (translations broken..)

“Stochastic Bogoliubov Particle Production”
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Stochastic Bogoliubov Particle Production

We have scrutinized many cases (spin<=1)

quite generally (eg. upon weyl rescaling, gauge fixing...)
all conformally coupled fields satisfy a linear equation

Y =J-

J is a differential operator depending on scalar/tensor fluctuations

J is zero in the far past and future, non zero and known in between!
Solution: a combination of positive/negative frequency k

Technically different from the massive case
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Stochastic Bogoliubov Particle Production

g =J 1)

We solve it perturbatively in the source:

Initial state: vy ~ &_e 7

It gives a known source Jo =J o

First non-trivial effect can be read-out with retarded Greens’ function*
Wk, T) = / dr' Gr(t — 7)) Jo(7))
we just project onto the Bogoliubov coefficient at infinity

*this method can be used instead of the in-in formalism in a few cases
[Maleknejad & Kopp ’24 uses in-in formalism]
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Stochastic Bogoliubov Particle Production

Extracting the coefficient is easy (same frequency)

Br(T) ~ / dr' e ik+w)T’ §;; N &=k — q

— OO

The source is linear in ((¢)T(q, )

Bogoliubov coefficient zero on average

Need to compute <‘Bk \2>

3
(182 / i / ar’ / T4 i) =7) s (W (r)UT))5 K[, q, cos ]
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Stochastic Gravitational Particle Production

The abundance of particles today is

3
dn k d cos 0dgq A

) Z(q, k 2Kk 0
dlogk 42 . (9)|Z(g, k + w)[*Kk, g, cos 0]

Kernel K depends on the spin [0,1/2,1]
I = Fourier transform of transfer function in k+w [known]

Scale set by curvature power spectrum generated during inflation

The abundance of particles today is found upon an integral in wavenumber
[all integrals converge, and have a good flat space limit]
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DM from curvature perturbations

In the case of fermion DM

The inflationary power spectrum has a finite support:
the integral is convergent

Results depends on the shape/amplitude of power spectrum
For a peaked spectrum at q* the DM abundance is reproduced:

109 GeV 5 0.001 5 0.1 5
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DM from curvature perturbations

Need a sizable primordial power spectrum

Related to ultra-slow roll scenarios (PBHs formation)
Need to happen at the end of inflation

Gravity waves at second order in the curvature

QDl\/[ ’S’cochastic —

inflationary fluctuations —> particle production
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yet another alternative derivation?

We are producing CFTs: what about the approach with in-in formalism®

B

i THY coupling to fluctuations in FRW background
pl

in-in formalism immediately gives the following structure

0 / / (hh) (T (7)T'T)

energy density computable by knowing stress-energy tensor 3-p function
and the power spectrum of all fluctuations h

need more thoughts about this, but looks interesting/general




Recap & Conclusions




DM from gravitationally coupled sectors




DM from gravitationally coupled sectors

Grayvitational freeze-in

ME,
SHZMZ,

Qpw|arr = 107° invisible




DM from gravitationally coupled sectors

Grayvitational freeze-in

MEk3
_ 10n-=5 R .
Qpwm|arr = 10 SHZME, invisible
Gravitational Particle Production
3
QDM|GPP > 10_2 MkM invisible

30, HE




DM from gravitationally coupled sectors

Grayvitational freeze-in

ME,
SHZMZ,

Qpw|arr = 107°

Gravitational Particle Production

M k3,
301, HE

Qb |app ~ 1077

Stochastic Gravitational Particle Production

_A M g3

2 stochastic — A *
DM |stochast 92 SMPQ)ng ¢(qx)

invisible

invigsible

secondary GWs/PBHs
non-trivial inflation needed




Outlook

the possibility that DM is only gravitationally coupled to us
is both concerning and compelling
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the possibility that DM is only gravitationally coupled to us
is both concerning and compelling

Thank you for your attention!

and thanks for the warm hospitality!




