PBH formation and Gravitational Waves as Multi-messenger Signals of First-order Phase Transitions

Adrian Thompson *in collaboration with* Bhaskar Dutta, Cash Hauptmann, *&* Peisi Huang September

12, 2024

1

Credit: NASA GSFC

Outline

- 1. Standard lore
	- a. Bubble nucleation
	- b. Gravitational Waves
- 2. A *B-L* model
- 3. PBH formation mechanisms
- 4. Multi-messenger parameter space

0.0020 $V(\phi)=-m^2\phi^2+\frac{\lambda}{4}\phi^4$ 0.0015 $T \gg T_c$ $V_{\text{eff}}(\phi,T)/\mu^4$ $T > T_c$ Finite 0.0010 temperature corrections 0.0005 $T=T_c$ $V(\phi,T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4$ 0.0000 $T=0$ -0.0005 [at finite order] 0.2 0.6 1.2 0.0 0.4 0.8 1.0 1.4 ϕ/μ

Consider a complex scalar field Φ , $\phi = |\Phi|$ with a Higgs-like potential:

Consider a complex scalar field Φ , $\phi = |\Phi|$ with a Higgs-like potential: $V(\phi) = -m^2\phi^2 + \frac{\lambda}{2}\phi^4$ Finite temperature corrections

$$
T > T_c
$$
\n
$$
\frac{T}{2}
$$
\n0.0005\n
\n
$$
T = T_c
$$
\n
$$
T = T_c
$$
\n
$$
V(\phi, T) = D(T^2 - T_0^2) \phi^2 - (AT + C) \phi^3 + \frac{\lambda}{4} \phi^4
$$
\n
$$
-0.0005
$$
\n
$$
T = T_c
$$
\n
$$
V(\phi, T) = D(T^2 - T_0^2) \phi^2 - (AT + C) \phi^3 + \frac{\lambda}{4} \phi^4
$$
\n
$$
+ \frac{T}{2}
$$
\nAt $T = 0$, the potential as a VEV = μ

0.0020

Consider a complex scalar field Φ , $\phi = |\Phi|$ with a Higgs-like potential:

Bubble Nucleation: A very hot cosmos freezing

quantum mechanically **tunnel** through barrier from $\langle \phi(x) \rangle = 0$ to the new minima

 T **<** T **c** ϕ =0

 ϕ =< ϕ >

Background Plasma interacting with ϕ

Bubble Nucleation: Theoretical Description

- \bullet *S*₃(*T*) is the O(3) symmetric bounce action
- \bullet $\Gamma(T)$ is the bubble nucleation tunnelling rate
- The **phase transition happens at temperature** T_{PT} if the tunneling rate can outcompete the Hubble expansion

$$
S_3 = 4\pi \int_0^R r^2 dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi(r), T) \right]
$$

8

Nucleation or Percolation?

- *●* Nucleation temperature *T n* : one bubble per Hubble volume
- Percolation temperature T_p < T_n : where the false vacuum (FV) fraction is 70%

$$
\mathbf{T}_{\mathbf{n}} \qquad \frac{\Gamma(T)}{H^4(T)} \simeq 1 \qquad \mathbf{T}_{\mathbf{p}} \qquad g(T_c, T) = \exp\left[-I(T)\right] \, = 0.7.
$$

The effective parameters describing the bubble nucleation

 β is the **inverse time of the transition** \rightarrow large beta, fast PT

$$
\left[\frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T}\right)\right]_{T_{PT}}
$$

See the Diligence paper: Guo, Sinha, Vagie, White

Guo, Sinha, Vagie, White
\n[2103.06933] (JHEP)
$$
H(T)^2 = \frac{8\pi}{3M_{Pl}^2} (\rho_R(T) + \rho_U(T))
$$
\nJournal of the image is shown in the image. The provided HTML is shown in the

Jouget velocity:

The effective parameters describing the bubble nucleation

 β is the **inverse time of the transition** \rightarrow large beta, fast PT

$$
\left[\frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T}\right)\right|_{T_{PT}}
$$

 : the **strength of the transition** includes both the latent heat and potential difference

$$
\alpha = \frac{30}{\pi^2 g_* T_{PT}^4} \bigg(-\Delta V + \frac{1}{4} T \frac{\partial \Delta V}{\partial T} \bigg|_{T_{PT}} \bigg)
$$

See the Diligence paper: Guo, Sinha, Vagie, White

$$
Guo, Sinha, Vagi, White
$$

(2103.06933] (JHEP)
$$
H(T)^{2} = \frac{8\pi}{3M_{Pl}^{2}}(\rho_{R}(T) + \rho_{U}(T))
$$

Jouget velocity: Hyprid ← |→ Detonation

Jouget velocity:

The effective parameters describing the bubble nucleation

 β is the **inverse time of the transition** \rightarrow large beta, fast PT

$$
\left[\frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T}\right)\right]_{T_{PT}}
$$

 : the **strength of the transition** includes both the latent heat and potential difference

$$
\alpha = \frac{30}{\pi^2 g_* T_{PT}^4} \bigg(-\Delta V + \frac{1}{4} T \frac{\partial \Delta V}{\partial T} \bigg|_{T_{PT}} \bigg)
$$

^w is the **bubble wall speed**, and tells us the dynamics of the GWs

v_w is the bubble wall speed , and	$v_w = \begin{cases} \sqrt{\frac{\Delta V}{\alpha \rho_r}} & \text{for } \sqrt{\frac{\Delta V}{\alpha \rho_r}} < v_J(\alpha) \\ 1 & \text{for } \sqrt{\frac{\Delta V}{\alpha \rho_r}} \ge v_J(\alpha) \end{cases}$	
See the <i>Diligence paper:</i>	$H(T)^2 = \frac{8\pi}{3M_{Pl}^2} (\rho_R(T) + \rho_U(T))$	<i>Jouget velocity:</i>
12103.06933] (JHEP)	$H(T)^2 = \frac{8\pi}{3M_{Pl}^2} (\rho_R(T) + \rho_U(T))$	<i>Jouget velocity:</i>

See the Diligence paper: Guo, Sinha, Vagie, White

$$
H(T)^{2} = \frac{8\pi}{3M_{Pl}^{2}}(\rho_{R}(T) + \rho_{U}(T))
$$

Gravitational Wave Production: Three sources

David Weir, *[Gravitational Waves from Early Universe Phase](https://www.gauss-centre.eu/results/astrophysics/gravitational-waves-from-early-universe-phase-transitions) [Transitions](https://www.gauss-centre.eu/results/astrophysics/gravitational-waves-from-early-universe-phase-transitions)*

Gravitational Wave Production

$$
\Omega_{\rm GW} = \Omega_{\rm sw} + \Omega_{\rm col} + \Omega_{\rm turb}
$$

Example: Sound Wave term

$$
h^2 \Omega_{\rm sw}(f) = 2.65 \times 10^{-6} \left[\frac{H(T_{\rm PT})}{\beta} \right] \left[\frac{\kappa_{\rm sw} \Omega}{1 + \Omega} \right]^2 \left[\frac{100}{g_{\rm PT}} \right]^{1/3} \omega \left[\frac{f}{f_{\rm sw}} \right]^3 \left[\frac{7}{4 + 3(f/f_{\rm sw})^2} \right]^{7/2}
$$

\n
$$
f_{\rm sw} = \frac{1.15}{\omega_{\rm w}} \left[\frac{\beta}{H(T_{\rm PT})} \right] h_{\ast}
$$

\n
$$
h_{\ast} = 1.65 \times 10^{-5} \,\text{Hz} \left[\frac{T_{\rm PT}}{100 \,\text{GeV}} \right] \left[\frac{g_{\rm PT}}{100} \right]^{1/6}
$$

\n
$$
h^2 \Omega \text{ is the gravitational strain, the amount of relative stretching of spacetime}
$$

Gravitational Wave Astronomy across Frequency Bands

 \sim nHz range (\sim 10 MeV scale) \sim mHz range (\sim GeV scale) \sim Hz range (\sim TeV scale)

A Conformally Invariant $U(1)_{B-L}$ Model

- A complex scalar Φ with $B L = 2$
- The gauge boson Z'
- RH neutrino ν_R

Simplifying Assumptions

- Only consider 1 species of ν_R
- Decoupled from SM; $\lambda' << 1$

$$
\mathcal{L}_{\text{scalar}} = -\lambda_H (H^{\dagger} H)^2 - \lambda (\Phi^{\dagger} \Phi)^2 - \lambda' (\Phi^{\dagger} \Phi) (H^{\dagger} H)
$$

$$
\mathcal{L}_{\text{Yukawa}} = -Y_D^{ij} \overline{\nu_R^i} H^{\dagger} l_L^j - \frac{1}{2} Y_i \Phi \overline{\nu_R^{ic}} \nu_R^i
$$

See e.g. Sher (1989), Meissner & Nicolai (2009), Iso, Okada, Orikasa <u>[0902.4050</u>] 16

A Conformally Invariant $U(1)_{B-L}$ Model: Radiative Phase Transition

$$
V_{\text{eff}}(\phi, T) = V_0(\phi) + V_T(\phi, T)
$$
\n
$$
V_0(\phi) = \frac{1}{4}\lambda(\tau)G(\tau)^4\phi^4
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$
\n
$$
V_T(\phi, T) = \frac{T^4}{2\pi^2} \sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)
$$

See e.g. Sher (1989), Meissner & Nicolai (2009), Iso, Okada, Orikasa [[0902.4050\]](https://arxiv.org/pdf/0902.4050)

Adrian Thompson (Northwestern U.) FNAL Theory Seminar September 12, 2024 FOLD FOR THEORY Seminar September 12, 2024

RG running + 1-loop

The Simplified Setup

Since we are in the limit decoupled from the SM Higgs, the **free parameters** in this model are $\sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n} x_i}$

Primordial Black Hole (PBH) Formation Mechanisms

Fermi-balls and soliton collapse

e.g., Hong, Jung, Xie [**[2008.04430](https://arxiv.org/pdf/2008.04430)**]

e.g., Baker, Breitbach, Kopp, Mittnacht [**[2105.07481](https://arxiv.org/abs/2105.07481)**]

PBH Formation Mechanism for our setup

True Vacuum $\langle \phi \rangle$ = *v* $m_{\nu R}$ \propto *Y* $\langle \phi \rangle$ > *T*_{PT} $m_{\nu R}$ = 0 False Vacuum $\langle \phi \rangle = 0$ *See also:* **formation**

Lu, Kawana, Xie [[2202.03439\]](https://arxiv.org/pdf/2202.03439.pdf) *PRD 105, 123503*

- Similar mechanism to Baker, Breitbach, Kopp, Mittnacht [**[2105.07481](https://arxiv.org/abs/2105.07481)**]
- \bullet If $m_{_{\rm vR}}$ > $\mathsf{T}_{_{\rm PT}}$ in the True Vacuum (TV), passage to False Vacuum (FV) is suppressed
- $\bullet \quad \rightarrow \nu_R^{}$ becomes trapped in FV
	- *Usually* take small Yukawa to protect

against $v_{\mathsf{R}} v_{\mathsf{R}} \to \phi \phi$, $v_{\mathsf{R}} v_{\mathsf{R}} \to \phi$ annihilation

● FV Collapse, overdense v_R drives PBH

PBH Formation from False Vacuum Collapse

$$
\frac{dn_{fv}}{dR_r^0} \approx \frac{I_*^4 \beta^4}{192v_w^3} e^{(4\beta R_r^0/v_w) - I_*e^{\beta R_r^0/v_w}} \left(1 - e^{-I_*e^{\beta R_r^0/v_w}}\right)
$$
\n
$$
\frac{10^0}{dR_r^0} \approx \frac{10^0}{10^{-10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^0}{\frac{1}{10}} \frac{10^{-2}}{10^{-4}} \frac{1}{\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}} \frac{1}{\frac{1}{10} \cdot \frac{1}{10}} \frac{1}{\frac{1}{10} \cdot \frac{1}{10}} \frac{1}{\frac{1}{10} \cdot \frac{1}{10}} \frac{1}{\frac{1}{10
$$

See Lu, Kawana, Xie [\[2202.03439](https://arxiv.org/pdf/2202.03439.pdf)] *PRD 105, 123503*

(based on geometric estimator for the FV "spherical" volume distribution)

$$
\frac{\mathrm{d}n_{\mathrm{PBH}}}{\mathrm{d}M} = \frac{\mathrm{d}n_{\mathrm{fv}}}{\mathrm{d}R_0} \left(\frac{\mathrm{d}M}{\mathrm{d}R_0}\right)^{-1}
$$

$$
M \approx \frac{4\pi}{3} R (t_{\rm col})^3 \rho_c (T_{\rm PT})
$$

(but this is not the end of the story, more on this later…) 21

PBH Abundance, Evaporation and Hawking Spectra

Use BlackHawk for the computation of PBH mass and Hawking spectra

 \rightarrow Convolve this with the FV fraction distribution to get dn/dM and photon sky

Observatories, past, present and future:

- Gamma-ray sky:
	- Fermi-LAT
	- AMEGO
	- NuStar
	- Chandra
	- COMPTEL
	- …
- Microlensing BH searches:
	- Subaru HSC
	- Roman
	- …

…a Multi-messenger Approach!

Where does the FOPT happen? Where are the Black Holes?

We scan over the model parameter space and check each point to see if:

- a strong FOPT is supported
	- the effective RH neutrino mass is heavy enough to be trapped and form PBH

Some benchmark points in model parameter space

Strong PTs can occur

Fast transitions

Some benchmark points: The GW spectrum from *B-L*

Among those strong FOPTs, where are the PBHs?

```
\langle \Phi \rangle=10 TeV
```


Scan over many VEVs!

PBH Formation: Scanning over the *B-L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- \bullet At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can…
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

PBH Formation: Scanning over the *B-L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- \bullet At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can…
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

PBH Formation: Scanning over the *B-L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- \bullet At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can…
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

A Bird's Eye View of the Multi-messenger Phase Space

A Bird's Eye View of the Multi-messenger Phase Space

Ongoing work: is PBH formation trivial? (No)

 $M = E_{\text{bubble}} + E_{\text{particles}} (r < R)$

$$
E_{\text{bubble}} = \frac{4\pi}{3}R^3\Delta V + \frac{4\pi R^2 \sigma}{\sqrt{1 - \dot{R}^2}}
$$

$$
\ddot{R} + 2\frac{1 - \dot{R}^2}{R} = \frac{(1 - \dot{R}^2)^{3/2}}{\sigma} \left(-\Delta V + \Delta P \right)
$$

Including the **vacuum density, surface tension**, and **pressure** from particle interaction across the wall can sometimes lead to **bounce solutions where collapse is prevented**

Ongoing work: is PBH formation trivial? (No)

 $M = E_{\text{bubble}} + E_{\text{particles}} (r < R)$

 $E_{\rm bubble} = \frac{4\pi}{3}R^3\Delta V + \frac{4\pi R^2\sigma}{\sqrt{1-\dot{R}^2}}$ $\ddot{R} + 2\frac{1-\dot{R}^2}{R} = \frac{(1-\dot{R}^2)^{3/2}}{\sigma}(-\Delta V + \Delta P)$

Including the **vacuum density, surface tension**, and **pressure** from particle interaction across the wall can sometimes lead to **bounce solutions where collapse is prevented**

Outlook: Good

- PTs connect to a broad range of **new physics scales**
- Multi-messenger approach gives a more predictive model space:
	- **○ Gravitational Waves**
	- **○ PBH dark matter**
	- **○ Hawking evaporation**
- **●** Current and upcoming GW observatories, gamma ray telescopes and weak lensing experiments together have **many things to say about new physics in the early cosmos**

Backup Deck

Adrian Thompson (Northwestern U.) and the contract of the FNAL Theory Seminar September 12, 2024

Example GW Spectra: $\langle \Phi \rangle$ =1 GeV

$$
V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4
$$

We fix the VEV and numerically scan over *D, A, C,* and

38

Parameter Scans: GWs from a Generic potential

$$
V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4
$$

How do we calculate the finite temperature effects? The answer: loops!

M. Quiros, ICTP Lecture Notes, 1999

How do we calculate the finite temperature effects?

How do we calculate the finite temperature effects? The answer: loops!

 $\beta = 1/T$

How do we calculate the finite temperature effects? The answer: loops!

 β =1/*T*

Anatomy of a Finite-*T* Potential: Scalar + massive Dirac fermion

$$
\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{\mu^{2}}{2}\phi^{2} - \frac{c}{3!}\phi^{3} - \frac{\lambda}{4!}\phi^{4} + \bar{\chi}(i\partial - m_{\chi})\chi - g_{\chi}\phi\bar{\chi}\chi
$$

bosonic thermal correction

$$
V_{\text{eff}}(\phi, T) = V_{\text{tree}} + V_{1,T}^{\text{ferm}} + V_{1,T}^{\text{scal.}} + V_{ct}
$$
\n
$$
= \delta\Omega + \delta P\phi + \frac{\mu^2 + \delta\mu}{2}\phi^2 + \frac{c + \delta c}{3!}\phi^3 + \frac{\lambda + \delta\lambda}{4!}\phi^4
$$
\ncounter-terms\n
$$
+ \frac{1}{64\pi^2}\mu^4(\phi)\left[\log(\mu^2(\phi)) - \frac{3}{2}\right] + \frac{T^4}{2\pi^2}J_B[\mu^2(\phi)/T^2]
$$
\nScalar 1-loop, T=0 correction\n
$$
- \frac{1}{16\pi^2}m_{\chi}^4(\phi)\left[\log(m_{\chi}^2(\phi)) - \frac{3}{2}\right] - \frac{2}{\pi^2}T^4J_F[m_{\chi}^2(\phi)/T^2]
$$
\nFermion 1-loop, T=0 correction\nFermion thermal correction\nFermion thermal correction

Hawking Spectra from PBH Evaporation: Today's Gamma Ray Sky

$$
n_{\gamma}(E_{\gamma,0}) = \int_{t_{\text{CMB}}}^{\min(t_e,t_0)} dt \int_{E_{\gamma}-\delta E_{\gamma}}^{E_{\gamma}+\delta E_{\gamma}} dE \left[\frac{a(t_0)}{a(t)} \right]^3 \frac{\partial^2 n_{\gamma}^{\text{co}}}{\partial t \partial E_{\gamma}}(E) \approx \int_{t_{\text{CMB}}}^{\min(t_e,t_0)} dt E_{\gamma} \left[\frac{a(t_0)}{a(t)} \right]^3 \frac{\partial^2 n_{\gamma}^{\text{co}}}{\partial t \partial E_{\gamma}}(E_{\gamma}) \approx \frac{1}{\frac{1}{\gamma}} \left[\frac{10^0}{10^0} \right] \approx \frac{1}{\frac{10^0}{\gamma}} \approx \frac{1}{\frac{10^0}{\gamma}}
$$