PBH formation and Gravitational Waves as Multi-messenger Signals of First-order Phase Transitions

Adrian Thompson *in collaboration with* Bhaskar Dutta, Cash Hauptmann, & Peisi Huang

September 12, 2024

Credit: NASA

Adrian Thompson

(Northwestern U.)

FNAL Theory Seminar

September 12, 2024

Outline

- 1. Standard lore
 - a. Bubble nucleation
 - b. Gravitational Waves
- 2. A *B-L* model
- 3. PBH formation mechanisms
- 4. Multi-messenger parameter space

0.0020 $V(\phi) = -m^2\phi^2 + \frac{\lambda}{4}\phi^4$ 0.0015 $T \gg T_c$ $T > T_c$ $V_{\rm eff}(\phi,T)/\mu^4$ Finite $0.0010 \cdot$ temperature corrections 0.0005 $V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4$ $T = T_c$ 0.0000 $T \equiv 0$ -0.0005[at finite order] 0.21.20.00.40.6 0.81.01.4 ϕ/μ

Adrian Thompson (Northwestern U.)

Consider a complex scalar field Φ , $\phi = |\Phi|$

with a Higgs-like potential:

with a Higgs-like potential: 0.0020 $V(\phi) = -m^2\phi^2 + \frac{\lambda}{4}\phi^4$ $0.0015 \cdot$ $T \gg T_c$ $T > T_c$ Finite 0.0010temperature corrections 0.0005 $T = T_c$ $V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4$ 0.0000 T = 0-0.00050.21.2 0.40.6 0.81.01.40.0 ϕ/μ At *T*=0, the potential as a VEV = μ

 $V_{\rm eff}(\phi,T)/\mu^4$

4

Consider a complex scalar field $\Phi, \phi = |\Phi|$

Consider a complex scalar field Φ , $\phi = |\Phi|$ with a Higgs-like potential:

Bubble Nucleation: A very hot cosmos freezing

quantum mechanically **tunnel** through barrier from $\langle \phi(x) \rangle = 0$ to the new minima

T < Tc $\phi = 0$

 $\phi = \langle \phi \rangle$

Background Plasma interacting with ϕ

Adrian Thompson

(Northwestern U.)

FNALTheory Seminar

Bubble Nucleation: Theoretical Description

- $S_3(T)$ is the O(3) symmetric bounce action
- Γ(T) is the bubble nucleation tunnelling rate
- The phase transition happens at temperature T_{PT} if the tunneling rate can outcompete the Hubble expansion

$$S_3 = 4\pi \int_0^R r^2 dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi(r), T) \right]$$

Nucleation or Percolation?

- Nucleation temperature T_n: one bubble per Hubble volume
- Percolation temperature $T_p < T_n$: where the false vacuum (FV) fraction is 70%

$$\textbf{T}_{\textbf{n}} \quad \frac{\Gamma(T)}{H^4(T)} \simeq 1 \qquad \textbf{T}_{\textbf{p}} \quad g(T_c,T) = \exp\left[-I(T)\right] = 0.7.$$

The effective parameters describing the bubble nucleation

eta is the **inverse time of the transition** ightarrow large beta, fast PT

$$\left| \frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T} \right) \right|_{T_{PT}}$$

See the Diligence paper: Guo, Sinha, Vagie, White [2103.06933] (JHEP)

$$H(T)^{2} = \frac{8\pi}{3M_{Pl}^{2}}(\rho_{R}(T) + \rho_{U}(T))$$

Jouget velocity: Hybrid $\leftarrow | \rightarrow$ Detonation

10

Adrian Thompson (Northwestern U.)

FNALTheory Seminar

September 12, 2024

The effective parameters describing the bubble nucleation

 β is the **inverse time of the transition** \rightarrow large beta, fast PT

$$\left| \frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T} \right) \right|_{T_{PT}}$$

 α : the strength of the transition includes both the latent heat and potential difference

$$\alpha = \frac{30}{\pi^2 g_* T_{PT}^4} \left(\left. -\Delta V + \frac{1}{4} T \frac{\partial \Delta V}{\partial T} \right|_{T_{PT}} \right)$$

See the Diligence paper: Guo, Sinha, Vagie, White [2103.06933] (JHEP)

$$H(T)^{2} = \frac{8\pi}{3M_{Pl}^{2}}(\rho_{R}(T) + \rho_{U}(T))$$

Jouget velocity: Hybrid $\leftarrow | \rightarrow$ Detonation

11

Adrian Thompson (Northwestern U.)

FNALTheory Seminar

September 12, 2024

The effective parameters describing the bubble nucleation

 β is the **inverse time of the transition** \rightarrow large beta, fast PT

$$\left| \frac{\beta}{H_{PT}} = T_{PT} \frac{d}{dT} \left(\frac{S_3}{T} \right) \right|_{T_{PT}}$$

 α : the strength of the transition includes both the latent heat and potential difference

$$\alpha = \frac{30}{\pi^2 g_* T_{PT}^4} \left(\left. -\Delta V + \frac{1}{4} T \frac{\partial \Delta V}{\partial T} \right|_{T_{PT}} \right)$$

 v_w is the **bubble wall speed**, and tells us the dynamics of the GWs

Adrian Thompson (Northwestern U.)

See the Diligence paper:

Guo, Sinha, Vagie, White [2103.06933] (JHEP)

FNALTheory Seminar

September 12, 2024

12

Gravitational Wave Production: Three sources

David Weir, Gravitational Waves from Early Universe Phase Transitions

13

Gravitational Wave Production

$$\Omega_{\rm GW} = \Omega_{\rm sw} + \Omega_{\rm col} + \Omega_{\rm turb}$$

Example: Sound Wave term

$$h^{2}\Omega_{\rm sw}(f) = 2.65 \times 10^{-6} \left[\frac{H(T_{\rm PT})}{\beta} \right] \left[\frac{\kappa_{\rm sw} \alpha}{1+\alpha} \right]^{2} \left[\frac{100}{g_{\rm PT}} \right]^{1/3} v_{w} \left[\frac{f}{f_{\rm sw}} \right]^{3} \left[\frac{7}{4+3(f/f_{\rm sw})^{2}} \right]^{7/2}$$

$$f_{\rm sw} = \frac{1.15}{v_{w}} \left[\frac{\beta}{H(T_{\rm PT})} \right] h_{*}$$

$$h_{*} = 1.65 \times 10^{-5} \,\mathrm{Hz} \left[\frac{T_{\rm PT}}{100 \,\mathrm{GeV}} \right] \left[\frac{g_{\rm PT}}{100} \right]^{1/6}$$

$$h^{2}\Omega \text{ is the gravitational strain, the amount of relative stretching of spacetime}$$

Gravitational Wave Astronomy across Frequency Bands

~ nHz range (~10 MeV scale)

~ mHz range (~ GeV scale)

A Conformally Invariant $U(1)_{B-L}$ Model

field	$ SU(3)_c $	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$ \mathrm{U}(1)_{B-L} $	g_i
q_L^i	3	2	+1/6	+1/3	12
u_R^i	3	1	+2/3	+1/3	6
d_R^i	3	1	-1/3	+1/3	6
l_L^i	1	2	-1/2	-1	4
ν_R^i	1	1	0	-1	$\left 1 \right $
e_R^i	1	1	-1	-1	2
H	1	2	-1/2	0	1
Φ	1	1	0	+2	1
Z'	1	1	0	0	3
G	1	1	0	+2	1

- A complex scalar Φ with B L = 2
- The gauge boson Z'
- RH neutrino ν_R

Simplifying Assumptions

- Only consider 1 species of ν_R
- Decoupled from SM; $\lambda' \ll 1$

$$\mathcal{L}_{\text{scalar}} = -\lambda_H (H^{\dagger} H)^2 - \lambda (\Phi^{\dagger} \Phi)^2 - \lambda' (\Phi^{\dagger} \Phi) (H^{\dagger} H)$$
$$\mathcal{L}_{\text{Yukawa}} = -Y_D^{ij} \overline{\nu_R^i} H^{\dagger} l_L^j - \frac{1}{2} Y_i \Phi \overline{\nu_R^{ic}} \nu_R^i$$

See e.g. Sher (1989), Meissner & Nicolai (2009), Iso, Okada, Orikasa [0902.4050]

Adrian Thompson (Northwestern U.)

FNALTheory Seminar

A Conformally Invariant $U(1)_{B-L}$ Model: Radiative Phase Transition

$$V_{\text{eff}}(\phi, T) = V_0(\phi) + V_T(\phi, T)$$

$$V_{\text{eff}}(\phi, T) = V_0(\phi) + V_T(\phi, T)$$

$$V_0(\phi) = \frac{1}{4}\lambda(\tau)G(\tau)^4\phi^4 \qquad V_T(\phi, T) = \frac{T^4}{2\pi^2}\sum_j g_j J_j \left(\frac{m_j(\phi)^2}{T^2} + \frac{\Pi_j(T)}{T^2}\right)$$
Zero temperature piece finite temperature piece
$$\phi/\sqrt{2} = \text{Re}(\Phi) \qquad \tau \sim \ln \frac{\phi}{\mu} \qquad \text{definitions}$$

$$G(\tau) \equiv \exp\left[-\int_0^{\tau} d\tau' \gamma(\tau')\right], \quad \gamma(\tau) \equiv \frac{1}{32\pi^2}\left[Y^2 - 24g_{B-L}^2\right]$$

See e.g. Sher (1989), Meissner & Nicolai (2009), Iso, Okada, Orikasa [0902.4050]

Adrian Thompson (Northwestern U.)

DC munning 1 1 lo

The Simplified Setup

Since we are in the limit decoupled from the SM Higgs, the **free parameters** in this model are • $\alpha_{B-L} \equiv \frac{g_{B-L}^2}{4\pi}$ • $\alpha_Y \equiv \frac{Y^2}{4\pi}$ Potential shape parameters Z'

Primordial Black Hole (PBH) Formation Mechanisms

Fermi-balls and soliton collapse

e.g., Hong, Jung, Xie [2008.04430]

False Vacuum Trapping and Collapse

e.g., Baker, Breitbach, Kopp, Mittnacht [2105.07481]

PBH Formation Mechanism for our setup

True VacuumFalse Vacuum $\langle \phi \rangle = v$ $\langle \phi \rangle = 0$ $m_{\nu R} \propto Y \langle \phi \rangle > T_{PT}$ $m_{\nu R} = 0$

(Northwestern U.)

See also:

Adrian Thompson

Lu, Kawana, Xie [2202.03439] PRD 105, 123503

- Similar mechanism to Baker, Breitbach, Kopp,
 Mittnacht [2105.07481]
- If $m_{\nu R} > T_{PT}$ in the True Vacuum (TV), passage to False Vacuum (FV) is suppressed
 - $\tilde{} \rightarrow v_{R}$ becomes trapped in FV
 - Usually take small Yukawa to protect

against $\mathbf{v}_{\mathbf{R}}\mathbf{v}_{\mathbf{R}} \to \phi\phi$, $\mathbf{v}_{\mathbf{R}}\mathbf{v}_{\mathbf{R}} \to \phi$ annihilation

• FV Collapse, overdense $v_{\rm R}$ drives PBH

formation

FNALTheory Seminar

PBH Formation from False Vacuum Collapse

$$\frac{\ln r_{\rm fv}}{\ln R_r^0} \approx \frac{I_*^4 \beta^4}{192 v_w^3} e^{(4\beta R_r^0/v_w) - I_* e^{\beta R_r^0/v_w}} \left(1 - e^{-I_* e^{\beta R_r^0/v_w}}\right)$$

See Lu, Kawana, Xie [2202.03439] PRD 105, 123503

(based on geometric estimator for the FV "spherical" volume distribution)

$$\frac{\mathrm{d}n_{\mathrm{PBH}}}{\mathrm{d}M} = \frac{\mathrm{d}n_{\mathrm{fv}}}{\mathrm{d}R_0} \left(\frac{\mathrm{d}M}{\mathrm{d}R_0}\right)^{-1}$$

$$M \approx \frac{4\pi}{3} R(t_{\rm col})^3 \rho_c(T_{\rm PT})$$

(but this is not the end of the story, more on this later...)

Adrian Thompson (Northwestern U.)

PBH Abundance, Evaporation and Hawking Spectra

Use BlackHawk for the computation of PBH mass and Hawking spectra

Convolve this with the FV fraction distribution to get dn/dM and photon sky

Observatories, past, present and future:

- Gamma-ray sky:
 - Fermi-LAT
 - AMEGO
 - NuStar
 - \circ Chandra
 - COMPTEL
 - 0 ..
- Microlensing BH searches:
 - Subaru HSC
 - Roman
 - 0 ...

...a Multi-messenger Approach!

+ Marfatia, Tseng [2107.00859] (JHEP 11 2021)

Where does the FOPT happen? Where are the Black Holes?

We scan over the model parameter space and check each point to see if:

- a strong FOPT is supported
 - the effective RH neutrino mass is heavy enough to be trapped and form PBH

September 12, 2024

Some benchmark points in model parameter space

	$\alpha_{B-L}(0)$	$\alpha_{Y_i}(0)$	$T_{ m PT}/\langle\Phi angle$	α	$\beta/H(T_{ m PT})$
BM1	1.857×10^{-2}	9.368×10^{-2}	8.694×10^{-2}	7.869×10^{-1}	9.228×10^1
BM2	1.998×10^{-2}	1.149×10^{-1}	8.671×10^{-2}	8.194×10^{-1}	9.660×10^1
BM3	2.332×10^{-2}	1.503×10^{-1}	1.006×10^{-1}	5.451×10^{-1}	9.021×10^1
BM4	3.682×10^{-2}	1.444×10^{-1}	3.075×10^{-1}	4.766×10^{-2}	8.664×10^2
BM5	4.507×10^{-2}	1.421×10^{-1}	3.953×10^{-1}	3.231×10^{-2}	1.460×10^3

Strong PTs can occur

Fast transitions

Some benchmark points: The GW spectrum from *B*-*L*

Adrian Thompson (Northwestern U.)

FNALTheory Seminar

Among those strong FOPTs, where are the PBHs?

```
\langle \Phi \rangle=10 TeV
```


Adrian Thompson (Northwestern U.)

FNALTheory Seminar

September 12, 2024

Scan over many VEVs!

PBH Formation: Scanning over the *B*-*L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can...
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

PBH Formation: Scanning over the *B*-*L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can...
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

PBH Formation: Scanning over the *B*-*L* breaking scale

- We scan over the *B-L* parameters at fixed VEVs
- At ~10^15 g PBH masses, they would all evaporate by today
- For VEVs around 10 GeV, projections for AMEGO telescope's sensitivity can...
- For smaller VEVs, Roman space telescope can discover PBHs from weak lensing effects

A Bird's Eye View of the Multi-messenger Phase Space

A Bird's Eye View of the Multi-messenger Phase Space

Ongoing work: is PBH formation trivial? (No)

 $M = E_{\text{bubble}} + E_{\text{particles}} (r < R)$

$$E_{\text{bubble}} = \frac{4\pi}{3}R^3\Delta V + \frac{4\pi R^2\sigma}{\sqrt{1-\dot{R}^2}}$$

$$\ddot{R} + 2\frac{1 - \dot{R}^2}{R} = \frac{(1 - \dot{R}^2)^{3/2}}{\sigma} \left(-\Delta V + \Delta P\right)$$

Including the vacuum density, surface tension, and pressure from particle interaction across the wall can sometimes lead to bounce solutions where collapse is prevented

Ongoing work: is PBH formation trivial? (No)

 $M = E_{\text{bubble}} + E_{\text{particles}}(r < R)$

 $E_{\text{bubble}} = \frac{4\pi}{3}R^{3}\Delta V + \frac{4\pi R^{2}\sigma}{\sqrt{1-\dot{R}^{2}}}$ $\ddot{R} + 2\frac{1-\dot{R}^{2}}{R} = \frac{(1-\dot{R}^{2})^{3/2}}{\sigma}\left(-\Delta V + \Delta P\right)$

Including the vacuum density, surface tension, and pressure from particle interaction across the wall can sometimes lead to bounce solutions where collapse is prevented

Outlook: Good

- PTs connect to a broad range of **new physics scales**
- Multi-messenger approach gives a more predictive model space:
 - Gravitational Waves
 - PBH dark matter
 - Hawking evaporation
- Current and upcoming GW observatories, gamma ray telescopes and weak lensing experiments together have many things to say about new physics in the early cosmos

Backup Deck

Adrian Thompson

(Northwestern U.)

FNAL Theory Seminar

Example GW Spectra: $\langle \Phi \rangle$ =1 GeV

$$V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4$$

We fix the VEV and numerically scan over *D*, *A*, *C*, and λ

38

Parameter Scans: GWs from a Generic potential

$$V(\phi, T) = D(T^2 - T_0^2)\phi^2 - (AT + C)\phi^3 + \frac{\lambda}{4}\phi^4$$

M. Quiros, ICTP Lecture Notes, 1999

41

β=1/T

β=1/T

Anatomy of a Finite-*T* Potential: Scalar + massive Dirac fermion

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{\mu^{2}}{2} \phi^{2} - \frac{c}{3!} \phi^{3} - \frac{\lambda}{4!} \phi^{4} + \bar{\chi} (i\partial \!\!\!/ - m_{\chi}) \chi - g_{\chi} \phi \bar{\chi} \chi$$

bosonic thermal correction

$$V_{\text{eff}}(\phi, T) = V_{\text{tree}} + V_{1,T}^{\text{ferm.}} + V_{1,T}^{\text{scal.}} + V_{ct}$$
Renormalization counter-terms
$$= \delta\Omega + \delta P \phi + \frac{\mu^2 + \delta\mu}{2} \phi^2 + \frac{c + \delta c}{3!} \phi^3 + \frac{\lambda + \delta\lambda}{4!} \phi^4$$

$$+ \frac{1}{64\pi^2} \mu^4(\phi) \left[\log \left(\mu^2(\phi) \right) - \frac{3}{2} \right] + \frac{T^4}{2\pi^2} J_B[\mu^2(\phi)/T^2]$$

$$- \frac{1}{16\pi^2} m_{\chi}^4(\phi) \left[\log \left(m_{\chi}^2(\phi) \right) - \frac{3}{2} \right] - \frac{2}{\pi^2} T^4 J_F[m_{\chi}^2(\phi)/T^2]$$
Fermion 1-loop, T=0 correction
Fermion 1-loop, T=0 correction

Hawking Spectra from PBH Evaporation: Today's Gamma Ray Sky

$$n_{\gamma}(E_{\gamma,0}) = \int_{t_{\text{CMB}}}^{\min(t_{e},t_{0})} dt \int_{E_{\gamma}-\delta E_{\gamma}}^{E_{\gamma}+\delta E_{\gamma}} dE \left[\frac{a(t_{0})}{a(t)}\right]^{3} \frac{\partial^{2} n_{\gamma}^{c_{0}}}{\partial t \partial E_{\gamma}}(E)$$

$$\approx \int_{t_{\text{CMB}}}^{\min(t_{e},t_{0})} dt E_{\gamma} \left[\frac{a(t_{0})}{a(t)}\right]^{3} \frac{\partial^{2} n_{\gamma}^{c_{0}}}{\partial t \partial E_{\gamma}}(E_{\gamma})$$

$$\approx E_{\gamma,0} \int_{t_{\text{CMB}}}^{\min(t_{e},t_{0})} dt \left[\frac{a(t_{0})}{a(t)}\right]^{4} \frac{\partial^{2} n_{\gamma}^{c_{0}}}{\partial t \partial E_{\gamma}}\left(E_{\gamma,0}\left[\frac{a(t_{0})}{a(t)}\right]\right).$$

$$4\pi E_{\gamma,0}^{2} \frac{dI_{\gamma}(E_{\gamma,0})}{dE_{\gamma,0}} = c E_{\gamma,0}^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$

$$10^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$

$$10^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$

$$10^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$

$$10^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$

$$10^{2} \frac{dn_{\gamma}}{dE_{\gamma,0}}(E_{\gamma,0})$$