FD-VD X-ARAPUCA PDE Measurement @CIEMAT:

DF-XA & noDF-XA & noDF-XA_24mg Comparison

Rodrigo Álvarez, Enrique Calvo, Aritz Canto, Clara Cuesta, Inés Gil, Ignacio López, <u>Sergio Manthey</u>, Iván Martín, Carmen Palomares, Laura Pérez, Antonio Verdugo

Ciemat

Goals

- 1. Measurement of the XA-VD **absolute PDE** (single-sided XA)
- 2. **Optimization** of the XA-VD **PDE**:

Comparison between XA configurations

- DF-XA
- noDF-XA

Ciemat

car Madios

MINISTERIO DE CIENCIA, INNOVACIÓN X UNIVERSIDADES

 \circ noDF-XA_24mg

XA configurations under test at CIEMAT

VD-XA CONFIGURATIONS								
XA	WLS Bar		SiPMs	SiPMs Filter		Status		
1. DF-XA	G2P (80 mg/kg)	3.8 mm	FBK TT	ZAOT	Single	Tested		
2. noDF-XA	G2P (80 mg/kg) 3.8 mm		FBK TT	*pTP PE-subs	Single	Tested		
3. noDF-XA_24mg	G2P (24 mg/kg) 5.5 mm		FBK TT	*pTP PE-subs	Single	Tested		
4. DF-XA-DS	G2P (80 mg/kg)	3.8 mm	FBK TT	ZAOT	Double	To Be Tested		
5. noDF-XA-DS	G2P (80 mg/kg)	3.8 mm	FBK TT	*pTP PE-subs	Double	To Be Tested		

*pTP coated substrate (P.E.) composed of fused silica JGS2

y Tecnológicas

CIEMAT Setup Description

DE CIENCIA, INNOVACIÓN

véticas, Medioambier

• Measurement of the XA PDE in LAr using 2 reference VUV SiPMs facing each other triggering on scintillation light from an ²⁴¹Am alpha source in 3 black calibration boxes (at the only 3 not identical XA positions)

CETP CIEMAT física de partículas

Timeline

Configuration	Setup Timeline					
1. DF-XA	Membrane XA assembly	Jul. 23				
1. DF-XA	LAr setup commissioning	Aug. 23				
1. DF-XA	Gain and noise characterization LN ₂	Sep. 23				
1. DF-XA	LAr PDE Data taking	(13 th - 15 th) Dec. 23				
2. noDF-XA	Noise characterization LN ₂	Mar. 24				
2. noDF-XA	LAr PDE Data taking	(13 th - 14 th) Mar. 24				
3. noDF-XA_24mg	LAr PDE Data taking	(16 th - 17 th) Apr. 24				

Setup Channel Arrangement

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Y Encolégicas

XA Calibration: Gain and S/N

- Example calibration finger plots for the different setups and light levels.
- Showing CH0 OV 4.5 V for ref.

Ciemat

Centro de Investigacione

ergéticas, Medioambientale y Tecnológicas

MINISTERIO DE CIENCIA, INNOVACIÓN

UNIVERSIDADES

XA Calibration: Gain and S/N

- Example calibration finger plots for the different setups and light levels.
- Showing CH0 OV 4.5 V for ref.

XA Calibration: Gain and S/N

• Both XA-channels successfully calibrated.

		XA0				XA1			
DF-XA:	OV	Gain e⁻	DGain e⁻	S/N	ERROR	Gain e⁻	DGain e⁻	S/N	ERROR
	7.0	6.82E+05	9E+03	4.63	0.27	6.83E+05	7E+03	5.27	0.14
	5.5	5.37E+05	9E+03	5.94	0.08	5.37E+05	1.3E+04	6.77	0.21
	4.5	4.41E+05	3E+03	4.48	0.10	4.40E+05	2E+03	4.63	0.04
	0\/	Gain o-	DGain o	S/N		Gain o	DGain o ⁻	S/N	
NODE-VA:	00	Gaine	DGaine	3/1	LINION	Gaine	DGaine	3/1	LINION
	7.0	6.63E+05	7E+03	6.47	0.05	6.91E+05	4E+03	5.95	0.08
	5.5	5.24E+05	1.2E+04	5.37	0.03	5.35E+05	6E+03	5.45	0.05
	4.5	4.32E+05	1.9E+04	4.56	0.02	4.31E+05	3E+03	4.57	0.02
DE VA 21ma	OV	Gain e⁻	DGain e⁻	S/N	ERROR	Gain e⁻	DGain e⁻	S/N	ERROR
110DF-7A_241119.	7.0	6.4E+05	1.9E+04	5.41	0.06	6.20E+05	6E+03	5.7	0.10
	5.5	5.0E+05	2.0E+04	4.51	0.04	4.84E+05	9E+03	4.6	0.14
	4.5	4.06E+05	9E+03	4.29	0.04	3.93E+05	5E+03	4.3	0.14

DUNE PH. COLLECTOR - 07 MAY 2024

Ciemat

Centro de Investigaciones Energéticas, Medioambientale: y Tecnológicas

SiPM Calibration

Showing stability of SiPM calibration curve between different measurements, setups and days

MINISTERIO

Ciemat DE CIENCIA, INNOVACIÓN UNIVERSIDADES rzéticas, Medioamb y Tecnológicas

Event examples

- Ref. sensors in each Box provide trigger conditions based on threshold + coincidence.
- \rightarrow Clean sample of alpha scintillation signals.

Ciemat

Centro de Investigacione

ergéticas, Medioambiental y Tecnológicas

GOBIERNO

DE ESPAÑIA

MINISTERIO DE CIENCIA, INNOVACIÓN

UNIVERSIDADES

Purity

GOBIERNO

DE ESPAÑIA

MINISTERIO DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES

DUNE PH. COLLECTOR - 07 MAY 2024

- **Ref. sensors in each Box** also provide purity estimation.
- $\rightarrow \sim 0.8$ us slow component.

Ciemat

Centro de Investigacione

ergéticas, Medioambiental y Tecnológicas

Comparison of XA-VD

DE CIENCIA, INNOVACIÓN

- No significant increase in collected charge for config #2 & #3!
- noDF-XA/noDF-XA_24mg sees ~29 26% (for ch0 ch1) more charge than DF-XA in every box (after correcting for absolute light diff.)

XA-VD Ch0 - OV 4.5 V - Config. Comparison

Conclusions

- Setup shows stable measurement conditions among different XA-VD configurations.
- **Preliminary CIEMAT measurement** of the absolute XA-VD PDE @CT in LAr for the 3 different positions and for 3 different XA configurations.
 - No significant charge difference between noDF-XA & noDF-XA_24mg (WLS width 5.4 mm).
 - noDF-XA/noDF-XA_24mg PDE ~30% higher than DF-XA PDE.
- Next measurement (mid May): Double-sided XA

Ciemot

• We will modify our current XA-VD module with parts delivered by Naples.

DEEP UNDERGROUND NEUTRINO EXPERIMENT

BACKUP

VACIÓN Cierro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Scintillation Setup Comparison (Day 1 - OV 4.5)

MegaCell Charge Difference

- Comparison of identical runs provides consistent increase in light collection.
- DF-XA charge has been corrected with a factor of 7.2% to account for absolute light differences measured at the SiPMs.

OV	Box	1.DF-XA	2.noDF-XA	3.noDF-XA_24mg	Rel. (2-1)/1	Rel. (3-1)/1	1.DF-XA	2.noDF-XA	3.noDF-XA_24mg	Rel. (2-1)/1	Rel. (3-1)/1	
Со	nfig	fig Cannel 0						Channel 1				
7.0	1	1.48E+06	1.89E+06	1.95E+06	28.21%	32.26%	1.13E+06	1.43E+06	1.52E+06	27.10%	34.97%	
7.0	2	1.66E+06	2.19E+06	2.17E+06	31.99%	30.85%	1.07E+06	1.38E+06	1.41E+06	28.84%	31.79%	
7.0	3	1.86E+06	2.40E+06	2.38E+06	29.31%	28.02%	9.59E+05	1.20E+06	1.19E+06	24.95%	24.43%	
4.5	1	6.10E+05	7.83E+05	7.98E+05	28.41%	30.92%	4.53E+05	5.76E+05	6.01E+05	26.94%	32.48%	
4.5	2	6.94E+05	8.96E+05	9.00E+05	29.22%	29.77%	4.29E+05	5.40E+05	5.56E+05	25.67%	29.46%	
4.5	3	7.82E+05	1.02E+06	9.98E+05	30.93%	27.56%	3.76E+05	4.76E+05	4.60E+05	26.51%	22.10%	
3.5	1	4.05E+05	5.13E+05	5.12E+05	26.65%	26.54%	2.98E+05	3.74E+05	3.82E+05	25.45%	28.03%	
3.5	2	4.59E+05	5.87E+05	5.77E+05	27.88%	25.78%	2.81E+05	3.49E+05	3.51E+05	24.40%	25.07%	
3.5	3	5.14E+05	6.73E+05	6.44E+05	30.89%	25.22%	2.45E+05	3.08E+05	2.89E+05	25.93%	18.23%	

MINISTERIO

UNIVERSIDADES

Ciemat DE CIENCIA, INNOVACIÓN rzéticas, Medioamb v Tecnológica

Updated XTalk Computation!

Ciemat

argéticas, Medioambientz

y Tecnológicas

GOBIERNO

MINISTERIO DE CIENCIA, INNOVACIÓN

LINUVERSIDADES

• Selected method for computation **Vinogradov model:** Fit composite poissonian to describes the effect of cross-talk.

XA PDE computation

Direct Method (Comparison with ref. SiPM efficiency)

$$\epsilon(\mathrm{XA}) = rac{\# PE_{\mathrm{XA}}}{\# PE_{\mathrm{Ref.SiPM}}} \cdot \epsilon(\mathrm{Ref.SiPM}) \cdot f_{corr}$$

#PE_{**}: PEs detected by the XA

#PE_{refSiPM}: PEs detected by the reference SiPMs

ε(ref SiPM): absolute measurement at CT by CIEMAT

Correction factors ($f_{corr} = f_{geo} * f_{XT}^{XA} / f_{XT}^{SiPM}$):

Ciemat

- f_{geo}: Geometrical Factor → correction for different distance of sensor to alpha source.
 f_{XT}: XTalk Correction → from dedicated measurements of FBK/HPK SiPMs

Updated XTalk Computation!

Ciemat

Centro de Investigacion

argéticas, Medioambie x Tecnolónicas

MINISTERIO DE CIENCIA, INNOVACIÓN

UNIVERSIDADES

- Using XTalk values (XT%) measured in the labs for FBK TT sensors.
- X-Check method from Vinogradov model (see backup).

XTalk Summary			Correc	tion Factor fxT	
XA	FBK TT		XA	FBK TT	$f_{\rm res} = 1$
OV	XT %		OV	fхт	$J_{\rm XT} = \overline{1 + K_{ m dup}}$
7	32.5 ± 0.5		7	0.68 ± 0.02	$K_1 - \frac{XT\%}{}$
4.5	16.1 ± 0.3		4.5	0.840 ± 0.005	$\mathbf{M}_{\mathrm{dup}} = 1 - \mathrm{XT\%}$
3.5	12.7 ± 0.3		3.5	0.873 ± 0.004	

