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What we’ll cover...

Let’s start at the beginning
What is CLFV?

What is Mu2e and how does it work?

Summary
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What else?

The Periodic Table of Elements
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But don’t get the idea that we understand everything ... or even very
much at all!
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But don’t get the idea that we understand everything ... or even very
much at all!

o Why is the Universe 14Gyr old?
« Why is there dark energy?

« Why is there dark matter?

« Why is there life?
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But don’t get the idea that we understand everything ... or even very
much at all!
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We have theories and
models that we think can
describe most of these -
but we don't really
understand all the “whys”
and “whats” and “hows” —
and there are things we
know we don’'t know!
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Quantum Field Theory and the Standard Model quantify what we know
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It is the Standard Model that quantifies what we know

But we don't see all
this complexity in our
everyday existence!

Fermilab
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There are no experiments in conflict* with the Standard Model ...
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There are no experiments in conflict* with the Standard Model ...

From the very
largest known
structures...

... to the
very
smallest!
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tructure within
the Atom
Quark
" -19.

Size < 1079 m

Electron
Size <107'8m
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There are no experiments in conflict* with the Standard Model ...

From the very
largest known

This is extremely
frustrating, annoying,
and difficult to

understand!

very
smallest!

\\\\\\\\\
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But all is not well: The flavor problem — Or, why are things heavy?
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But all is not well: The flavor problem — Or, why are things heavy?

Up Quark Charm Quark Top Quark
~0.002 GeV 1.25 GeV 175 GeV

- O

. @
Down Quark Strange Quark Bottom Quark
~0.005 GeV ~ 0.095 GeV 4.2 GeV

These are relative masses not size — they have no measurable size

Electron
0.0005 GeV

Muon
0.105 GeV

Tau
1.78 GeV

Electron Neutrino

~0

Muon Neutrino
~0

Tau Neutrino
~0
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For reference:

Proton
0.938 GeV

Originally thought to be
massless but now not
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Originally thought to be
—
massless but now not

We have a
descriptive — but
not explanatory! -
solution: the Higgs
Boson
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Some other minor issues: what’s the rest of the universe?
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Some other minor issues: what’s the rest of the universe?

96% of the universe is not the stuff I've
told you about! And we have no idea
what that other stuff is!
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Some other minor issues: what’s the rest of the universe?

96% of the universe is not the stuff I've

told you about! And we have no idea

1(1+1)C,/2r [uK?]

what that other stuff is!

6000 —

4000 [—

2000 —

| 1 | 1 1
10 40 100 200 400 800
Multipole moment I
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There are many similar challenges, they’re all exciting, and lots of
explanations have been proposed to address them
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There are many similar challenges, they’re all exciting, and lots of
explanations have been proposed to address them

« Modified gravity
 Extra dimensions to the universe

- Both small and large varieties

« Add new particles

- Supersymmetry

 Add new forces

- Strongly and weakly interacting

« And lots of others!
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There are many similar challenges, they’re all exciting, and lots of
explanations have been proposed to address them

« Modified gravity

Extra dimensions to the universe

- Both small and large varieties None Of these SCenariOS (yet)
. Add new particles provide a complete, consistent
—  Supersymmetry solution ... and they never W|”,

In the absence of guidance

Add new forces _
from experiments.

- Strongly and weakly interacting

And lots of others!
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How do we think about potential high energy physics” experiments?
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How do we think about potential high energy physics” experiments?
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Origin of Mass

Origin of Universe

Unification of Forces

New Physics
Beyond the Standard Model
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How do we think about potential high energy physics” experiments?

Origin of Mass

Origin of Universe

Unification of Forces

New Physics
Beyond the Standard Model

Neutrino Physics

Mu2e lives herel — >

2& Fermilab
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Intensity Frontier experiments are further split into two classes

 Precision Measurements
- Try to measure specific parameters with ridiculously high precision
« Eg: Muon g-2
 Rare and Forbidden Process Searches

- We look in huge piles of data for
« Events the Standard Model predicts are extremely rare, in the hopes they occur more/less often, or
« Events the Standard Model predicts don’t happen at all, in the hopes that they occur more often than that
« Eg: Mu2e

2% Fermilab
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Precision Measurements: How far to Two Brothers?
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Precision Measurements: How far to Two Brothers?
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Rare Searches: what is the natural frequency of people with blue hair?
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Rare Searches: what is the natural frequency of people with blue hair?
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Oh, and, make
sure you aren't
fooled by people

who dye their hair
blue ... and then
lie about it!
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As I've hinted, these measurements have two problems to overcome
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As I've hinted, these measurements have two problems to overcome

Systematic Uncertainties
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Systematic Uncertainties Statistical Uncertainties
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As I've hinted, these measurements have two problems to overcome

Systematic Uncertainties Statistical Uncertainties

Systematics is about
removing or
accounting for
effects that shift or
scale your
measurements from
underlying physics.
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Systematic Uncertainties Statistical Uncertainties

Systematics is about
removing or
accounting for
effects that shift or
scale your
measurements from
underlying physics.
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As I've hinted, these measurements have two problems to overcome

Systematic Uncertainties Statistical Uncertainties

Statistics is about

making /ots of

Systematics is about measurements to

removing or

accounting for overcome

effects that shift or Poisson.

scale your

measurements from 0T 1
underlying physics. — X

T VN
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As I've hinted, these measurements have two problems to overcome

Systematic Uncertainties Statistical Uncertainties

Statistics is about

making /ots of

Systematics is about measurements to

removing or

accounting for overcome
effects that shift or Poisson.
scale your 5 .
measurements from T «
underlying physics. A

T vV N
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Oops! | forgot about one other minor issue...
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Let’s turn next to CLFV in the muon sector; first, what’s a muon?
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Let’s turn next to CLFV in the muon sector; first, what’s a muon?
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But we do know lots of things about muons!
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But we do know lots of things about muons!

1)
Ordinary
,U+ e"’ Muon
Decay
e
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But we do know lots of things about muons!

4 4 Ordinary

o Muon
H Decay

14

\ Il Muon
Nuclear
Capture
P
Y
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But we do know lots of things about muons!

85
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Collisions : p-+H, —*[ L, p'] (n=14)

n=14
Ordinary
Muon
Decay
Fluorescence Lyman-o.
Muon (ravon X 2 2 keV)
Nuclear
Capture 15 Y
Chemistry!
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Making muons is easy!

You bathe in cosmic ray muons every second S8

of your life! .

« ~1 per square centimeter per minute at sea
level

« 10,000 will pass through you during this talk! Vi

20000 m

& Fermilab
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Making muons is easy!

You bathe in cosmic ray muons every second
of your life!

« ~1 per square centimeter per minute at sea
level

« 10,000 will pass through you during this talk!

Protons + nucleii — “junk” + pions

™ = ut +u,

_ _ 99.99%
T — u + Uy,
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30000 m

Secondary
cosmic rays

\"' H
20000 m
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In the Standard Model*, once a muon always a muon

 That s, lepton flavor (and number!) are conserved
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In the Standard Model*, once a muon always a muon
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Mu2e (and our competitor COMET) are searches for
charged lepton flavor violation with discovery potential
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Mu2e (and our competitor COMET) are searches for
charged lepton flavor violation with discovery potential

Although it has never been observed, we know that CLFV must
occur, even in the Standard Model, through neutrino loop effects.

N
W
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Mu2e (and our competitor COMET) are searches for
charged lepton flavor violation with discovery potential

Although it has never been observed, we know that CLFV must
occur, even in the Standard Model, through neutrino loop effects.

/y
W-
p — e
wk Vk Uek:
However, the predicted SM rates are
unobservably small: 9
Br(i - ¢7) = oo > UnU Am | g5
T = — ck———5 —
N T B | & TR AL
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This is a good news/bad news story
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This is a good news/bad news story

96 Lynch | 2024 Summer Lectures

v
W—
. — o
Yk Uek

2% Fermilab



This is a good news/bad news story

First, the bad news: we’ll
never observe this! e
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This is a good news/bad news story 8
W-
First, the bad news: we'll
never observe this! e - —

wk

Now, the good news: we’ll never observe this!
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This is a good news/bad news story 8

W-
First, the bad news: we'll
never observe this! e - —
. Yk Uek

wk

Now, the good news: we’ll never observe this!

Any signal of CLFV is unambiguous evidence for physics
beyond the Standard Model!

& Fermilab
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There are many potential signatures of CLFV physics in the muon sector

Surface muon beams “High” energy beams

ut = ety uw A(Z,N) —e A(Z,N)

Ut S eteten nw A(Z,N) = eTA(Z —2,N)
CLFV and LNV!
,LL+6_ <~ ,u_6+
Double CLFV! There are a large number of
experiments proposed to further address

these channels; | apologize for only
mentioning those I'm involved with.

& Fermilab
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The most powerful signatures are being actively pursued

,u+ —~etete”

+ +
po—r ety .
Y
Two-body
M - > e~
i > > e
e—|—
MEG/MEG-II at PSI Mu3e at PSI

& Fermilab
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Coherent neutrinoless conversion is the Mu2e program

Mu2e and COMET will search for Coherent N N

Conversion

" A(Z,N) — e~ A(Z,N)

p _Tardsea) 0N,
T (A -y A

& Fermilab
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We’re extending a long line of experiments designed to
understand the mystery of muon flavor
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We’re extending a long line of experiments designed to
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Our key advantage: conversion is kinematically distinct
from the background muon decay spectrum
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Our key advantage: conversion is kinematically distinct

from the background muon decay spectrum
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Our key advantage: conversion is kinematically distinct

from the background muon decay spectrum
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Our signal is a mono-
energetic electron at
105 MeV, above the
background tail!
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Beam induced backgrounds can be reduced by using a
pulsed beam source ... which we can generate at Fermilab

x10°
— Mu2e simulation, 1.6 x 107 protons / pulse

proton pulse arrival at the production target

— beam flash arrival at the stopping target (x4)
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« arrival at the stopping target (x70,000)
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Let’s first explore how Mu2e will tackle this challenge

Detector Solenoid

2% Fermilab
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Where do our protons come from? Keep this constraint in mind:
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Where do our protons come from? Keep this constraint in mind:

Since the end of Tevatron running, neutrino
physics has driven the proton economics at
Fermilab, and that will remain the key driver for
the next 30+ years!

& Fermilab
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Cartoon of the current accelerator complex

Main Injector )
Recycler Ring

Short Baseline Neutrino:
ICARUS, ANNIE, SBND

Low-Energy
Meutrino

SwitchYard120: Exporimerts
e High-E
test beam (FTBF), . g
S i X g Muon Experiments
PinQuest Booster V8 Ring Long Baseline Neutrino:

el iy NOVA
Test Beam )
Facility Linac

Muon Campus:

lon Source

oot Irradiation Test g-2 (completes this year),
" Area (ITA) in Linac Mu2e (commissioning) _ _
3¢ Fermilab
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Cartoon of the current accelerator complex

“-N'* <«— Permanent Magnet
' Storage Ring!

Main Injector )
Recycler Ring

60-120GeV 8GeV

Short Baseline Neutrino

8GeV
Low-Energy
Meutrino
BExperiments
SwitchYard120 o S = High-Energy
120GeV I TR e | |
Booster Wl Long Baseline Neutrino

- 8GeV 120GeV
Test Beam
Facility

Muon Campus

lon Source Experiments

;:; Linac 8GeV
400MeV _
2% Fermilab
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Reminder that these cartoons hide a wealth
of complex and interesting science and
engineering

Main Injector

Low-Energy
Neutrino
Experiments

High-Energy
Neutrino
Experiments

Fixed-Target
Experiments,
Test Beam
Facility
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Reminder that these cartoons hide a wealth
of complex and interesting science and
engineering

Recycler Ring

NuMI Extraction Line

Main Injector
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They also hide a vast hierarchy of scales!

* Linac (400MeV)

* Booster (8GeV)

« RR/MI (8GeV/120GeV)

 Muon Campus (3.094GeV/8GeV)
* BNB (8GeV)

* NuMI (120GeV)

.....,‘\ - 4
b
- P N
: 4 Y 7 “{ &)
ermila, ‘MuonCampus) ¥ 2% £ N - v 4
‘ . Y ANAY . AP
\ » U
: = | -
g ke 1

.
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The accelerator timeline is organized around the NuMi program

* H-linac (1970, 1993, 2012)  risER MY
— 400 MeV linac ~20mA E
* Booster synchrotron (1970) : B
— H- stripping injection (1978) i
* 16 turns to ~4.7x10'2 p per pulse “f 1=
— Resonant Ramp from 0.4t0 8 GeVat15Hz ¢ & | . | F |3
* Recycler (1998) B :
— 3.3 km permanent magnet 8 GeV ring : is
— Slip-stacking 12 Booster batches, ~56x10'2 p -ﬁci
— Also re-bunches beam for Muon Campus jg
 Main Injector (1998, but!) =

— 810 120 GeV ramp, cycle time 1.133*-1.4 s

1.33s cycle shown
$& Fermilab
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Stacking beam in the Recycler is the key timeline constraint

« Slip stacking is a method of injecting multiple beams at different momenta into the same

circular machine.

- We combine slip stacking with boxcar stacking to stuff beam into the Recycler

) o~ PLcon |© ) &)
Boxcar
stacking
7x as many continues...
53MHz RF
buckets in RR/MI - -
as in Booster f)| - )P h) )| o= i)
(588/84) ... 81 >
filled buckets per Slip-stacking
transfer continues...
—=
—-

« These manipulations require 13 ticks of the Booster clock

- 12 for injection, one for extraction

124 Lynch | 2024 Summer Lectures
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We want to take those spare protons
and move them to Mu2e

« Each Booster batch is
rebunched from 81 x 53MHz
to 4 x 2.5MHz

« The rebunched beam pulses
are extracted one at a time
from the RR

« These pulses are injected
into the 2.36MHz DR

« Those protons are then slow
extracted to the experiment

125 Lynch | 2024 Summer Lectures



We want to take those spare protons
and move them to Mu2e

Each Booster batch is
rebunched from 81 x 53MHz
to 4 x 2.5MHz

The rebunched beam pulses
are extracted one at a time
from the RR

These pulses are injected
into the 2.36MHz DR Delivery Ring
Those protons are then slow
extracted to the experiment

M4/M5

126
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We want to take those spare protons
and move them to Mu2e

« Each Booster batch is
rebunched from 81 x 53MHz
to 4 x 2.5MHz

« The rebunched beam pulses
are extracted one at a time
from the RR

« These pulses are injected
into the 2.36MHz DR

« Those protons are then slow
extracted to the experiment

2% Fermilab
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All our machine timelines are built around moving 12 successive Booster

batches to the Ml — how does this impact muons?
120 Gev

>

Main Injector Ramp

RR Inject

ticks 0 1 8 21 29
msec 0 67 533 1400 1933

| Mu2e Batch | NOvA Batch

1 tick = 1/15 sec
2% Fermilab
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All our machine timelines are built around moving 12 successive Booster

batches to the Ml — how does this impact muons?
120 Gev

>

Main Injector Ramp

RR Inject

ticks 0 1 8 21 29

msec 0 67 533 \ 1400 1933
J NOVAB

Il Mu2e Batch St 12 batches for NuMI

1 tick = 1/15 sec
2% Fermilab

129 Lynch | 2024 Summer Lectures



All our machine timelines are built around moving 12 successive Booster

batches to the Ml — how does this impact muons?
120 Gev

>

Main Injector Ramp

RR Inject

ticks 0 1 8 21 29
msec 0 67 533 00 1933

| Mu2e Batch | NOvA Batch

1 tick = 1/15 sec One tick for RR — Ml transfer
2& Fermilab
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All our machine timelines are built around moving 12 successive Booster

batches to the Ml — how does this impact muons?
120 Gev

>

Main Injector Ramp

RR Inject

ticks 0 1 8 21 29

msec 0 67 533 1400 1933
i Mu2e Batch ~ [| NOvA Batch Two batches for Mu2e

1 tick = 1/15 sec
2% Fermilab
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All our machine timelines are built around moving 12 successive Booster

batches to the Ml — how does this impact muons?
120 Gev

>

Main Injector Ramp

RR Inject

ticks 0 1 8 21 29
msec 0 67 533 1400 1933

| Mu2e Batch | NOvA Batch

, Rebunching and transfer to DR
1tick =1/15 sec 81x2 53MHz — 1x8 2.5MHz

2% Fermilab
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Beam to Mu2e is resonantly extracted from the DR over 8 ticks

0

IS
b
0
<

1
R —
1

90 ms

1
1

0 < o
(suojoud NFo_‘vo Aisuaul ¥y

I
8 9
5 ms reset

\

~— o

(suojoud N_otc Aisuayu| ¥a

Time (15 Hz ticks)

after each spill

2% Fermilab
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Beam to Mu2e is resonantly extracted from the DR over 8 ticks

48.1 ms

1 1
R —
1

90 ms

1
1

(o) < - ~

(suojoud NFo_‘vo Aisuapy|

Two batches from Booster

_
o

(suojoud Sotc Aisuayu| ¥a

8 9
5 ms reset

\

Time (15 Hz ticks)

after each spill
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48.1 ms

R —

90 ms

-—

(suojoud , 01x) AU Yy

_
o

(suojoud N_otc Aisuayu| ¥a

Beam to Mu2e is resonantly extracted from the DR over 8 ticks
Rebatching takes >1 15Hz tick!!!

9

5 ms reset
after each spill

8

2% Fermilab

\

Time (15 Hz ticks)
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Beam to Mu2e is resonantly extracted from the DR over 8 ticks

\\\\\

7

000

90 ms

1
1

0 < o
(suojoud Nroto Aisuajul ¥y

(suoypud , 01x) Ayisuayul ya

Move one of the new batches to DR
2.5MHz — 2.36MHZz!

9

8

5 ms reset
after each spill

\

Time (15 Hz ticks)
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90 ms

-—

(suojoud Nroto Aisuaul ¥y

Beam to Mu2e is resonantly extracted from the DR over 8 ticks

[ [
~ o

(suojoud N_oto Aisuayuya

9

5 ms reset
after each spill

8
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Resonant extraction ~25-30k pulses to Mu2e
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Mu2e resonantly extracts from the delivery ring

« Quadrupoles intentionally drive a 1/3

integer resonance in the horizontal tune. ] I |
« Sextupoles induce a controlled beam Eupeling e i
instability. : /' -:"‘"#_‘;/;;‘ ”\ \M"f“'?

« Septum foils peel off a bunch each turn.

« Dynamic spill regulation control is
accomplished by tune corrections and
RFKO.

« Full extraction occurs over ~25-30k turns.

« Remaining beam is dumped, and the cycle
starts again.

I

The delivery ring orbital period — 1695ns — drives
the interpulse spacing in Mu2e, and is a nearly ideal
match to the muonic aluminum lifetime of 864ns.

2% Fermilab
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Twenty slides ago, | showed you this picture

Detector Solenoid

& Fermilab
139 Lynch | 2024 Summer Lectures



The production target is mounted inside a high field Production
Solenoid, and we capture and transport backward muons

. Proton beam pipe Water
BronzePieces

Protons
—
To Beam - >
Stop Transport

Production Target

Vacuum Liner

OuterSS shell

2% Fermilab
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The production target is a radiatively cooled tungsten
structure

« Bicycle wheel support

« LaO.-doped Tungsten, core is EDMed from
single rod

« Longitudinally segmented cylinder (stress
management):

- 3.15 mm radius, 160+60 mm length

« Longitudinal fins (structure and thermal
management)

« 1mm tungsten spokes

« ~ 700 W power absorption

« ~ 1500 K temperature
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The Transport Solenoid sign-selects with a collimator

142

The curved transport
solenoid separates

charged particles in the
non-bend direction.

Collimators in the central
straight section reject most
wrong sign particles, and
can be rotated to change
sign for calibration runs.

2% Fermilab
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The Detector Solenoid is the heart of the experiment

Neutron Proton absorbers
absorber

Muon Beam

Calorimeter Beam Stop

_ Tracker
Stopping Target

2% Fermilab
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The Detector Solenoid is the heart of the experiment

Neutron Proton abs
absorber

The stopping target is 17 Al foils to
intercept and stop the secondary
beam

2% Fermilab
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The Detector Solenoid is the heart of the experiment

Neutron Proton absorbers
absorber

Muon
Calorimeter Beam Stop

= Stopping Target

The electron tracker is a
low mass straw tube
design with 18 stations of
tubes transverse to the
secondary beam, with
21,000 straws in total.

It provides precision
momentum measurement.

2% Fermilab
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The Detector Solenoid is the heart of the experiment

Neutron Proton ab
absorber

Stopping Target

The calorimeter is a two layer,
annular, undoped Csl crystal
calorimeter.

It provides precision timing and
particle 1D

2% Fermilab
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Detectors are uninstrumented along the axis of the

solenoid

The vast majority of
remnant beam,
brehmstrahlung, and
muon decay
products escape
down this central
hole and are
captured in a muon
beam stop designed
to prevent “back
splash”
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Mu2e running will be split by the LBNF shutdown

Construction should complete in

2025, with commissioning and Run
1 physics data in 2026-2027.
Recently completed a sensitivity

estimate for Run 1:

o
)
!
=

u2e Run 1 simulation —CE :4.280
—e— Cosmics :0.047

*

R :1.0x10™ —=—DIO  :0.038

; 6
Ny saope : 6 % 10° —— Pbar  :0.010
T :[640,1650] ns —»— RPC :10.011

N /50 keVic

0.25

*

* 50 discovery R=1.1 x 1015 Y i
* 90% CL R<59x107s
* 1000x better than SINDRUM-II iy

* Paper to be submitted to Universe 5

|II|][[III|II]I|I]II|III

Run 2 will commence in 2029 with 0.05
a goal to improve the measurement
to 10000x better than SINDRUM-II.

104.5 105
e track momentum (MeV/c)

=
FTTTTT
»

For the full dataset, our expected
sensitivity
e 90% CL R<fewx 10"

Long DIO tail due to
nuclear recoil

2% Fermilab
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To summarize...

« Fundamental muon physics today is focused on CLFV searches
- u—ey
- u— eee
- uN-—-eN

« Mu2e and COMET are friendly competition in the conversion search with much
shared DNA

- Both aim for a 10,000x improvement over SINDRUM-II

« We're either going to discover new physics in the next few years, or we'll provide
a nearly unprecedented improvement in sensitivity, either of which beg for a next
generation experiment

- Although I couldn’t talk about them today, there are ideas to gain an additional 2-3 orders of
magnitude with future searches in these and other channels

2% Fermilab
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Thanks for your interest and attention!

/
7
/ 7 78 & LN
2 LY
g 1
4 3
/. - . -

455458535
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