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▪ Goal: Measure muon magnetic 

moment.

▪ Purpose: Search for physics 

beyond the Standard Model.

▪ SM predicts one value.

▪ Potential new models 

(supersymmetry) predict 

different values.

▪ Precision measurement will give 

evidence for or against new 

models.

The E989 Muon g-2 Experiment
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Muon g-2 Collaboration group photo, 

November 2014.



▪ Introduction: the Muon g-2 Experiment

▪ Background: Muons, Magnetic Moments, and “g”

▪ Goals: Significance of Muon g-2

▪ Methodology: Measuring Muons

▪ Design: Muon Storage Ring

▪ Design: Magnetic Field Probes

▪ Results (so far)

▪ Conclusion and Discussion

Presentation Overview
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Background



Meet the Muon!
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Standard Model Particles

μ

Same charge, 

same spin, 

207x larger mass.

e



𝜇− → 𝑒− + ν𝜇 + ഥν𝑒
Muon lifetime: 2.2 microseconds.

Muon Decay
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Natural Muons
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▪ Discovered in 1936 by 

Carl Anderson and 

Seth Neddermeyer.

▪ Observed in cosmic ray 

showers.

Discovering Muons
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Cosmic ray 

tracks visible in a 

magnetic cloud 

chamber.



Making Muons at Fermilab
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▪ Particle accelerator provides protons.

▪ Protons hitting target create pions.

▪ Pions decay into muons.

▪ Filters select positive muons, with 

“magic momentum” 3.094 GeV/c.



Charge 𝑞 and Spin Ԧ𝑆 make muons magnetic.

Magnetic moment Ԧ𝜇 describes how strongly 

muons respond to magnetic fields.

Magnetic Moments
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Muon

Muon Magnetic Moment Ԧ𝜇 ∶

Ԧ𝜇 = 𝑔 ∗
𝑞

2𝑚
∗ Ԧ𝑆



The g-factor
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Muon

Muon Magnetic Moment Ԧ𝜇 ∶

Ԧ𝜇 = 𝑔 ∗
𝑞

2𝑚
∗ Ԧ𝑆

The quantum correction factor “g”.

(It’s the “g” in “Muon g-2”.)

Measuring it is our goal!

𝑎𝜇 =
𝑔 − 2

2

But 𝑎𝜇 makes equations 

nicer, so we usually end up 

writing 𝑎𝜇 instead.



Quantum Corrections
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𝜇

𝛾

𝜇

Basic Feynman Diagram: 

Muon interacts with 

magnetic field.

𝜇

𝛾

𝜇

Additional diagrams cover 

the superposition of many 

possibilities!

Virtual 

Particles

(With just this, g would be 2.)

In quantum 

physics, all 

possible 

paths impact 

the outcome. 



▪ The Standard Model lets us calculate diagrams using all known particles, forces, 

and interactions.

Predicting “g”
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𝜇

𝛾

𝜇

Many 

more SM 

diagrams

QED EW QCD QCD

▪ Standard Model Prediction (as of 2020)*: 

▪ 𝑔 = 2.0023318362

▪ (*Technically undetermined since 2021, due to two conflicting HVP calculations.)



Why this is important
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𝜇

𝛾

𝜇

Every-

thing 

Else

▪ All of physics goes into determining “g”. Including undiscovered physics!

The true value of “g”
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𝜇

𝛾

𝜇

Many 

more SM 

diagrams

Supersymmetry 

particles?
Dark Matter?

Humans might not know about them yet, 

but muons do!



▪ The Standard Model is incomplete. 

▪ There are ideas for Beyond the Standard Model 

(BSM), but none have supporting evidence yet.

▪ This experiment will help clarify what’s missing.

▪ Agreement with theory -> Constrain BSM models

▪ Disagreement with theory -> Confirm BSM models

Testing the Standard Model
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▪ *Technically true for all particles.

▪ Muon magnetic moment is special for two reasons:

▪ High mass makes it more sensitive to possible supersymmetry particles.

▪ We might have seen new physics in it already!

Clarification
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Supersymmetry 

particles?
Dark Matter?

“Humans might not know about them yet, 

but muons do!” *



▪ A muon magnetic moment experiment at Brookhaven National Lab, 

running 1997 – 2001.

▪ Found discrepancy with Standard Model!

▪ But, only by ~3.5σ.

Brookhaven E821

6/18/2024 David Kessler | Muon g-2 at Fermilab18

Brookhaven E821 g-2 Experiment.

Collaboration photo (left), 

Results comparison (above).

Standard for a 

new discovery: 

5σ



▪ Several BSM models match Brookhaven’s findings.

▪ Supersymmetries mostly.

▪ Experimental uncertainty must be reduced before conclusions can be made.

▪ This motivated Muon g-2 at Fermilab:

▪ Improve and redo Brookhaven’s measurement with 4x lower uncertainty.

▪ Uncertainty goal: 140 parts per billion (ppb).

▪ One of the most precise measurements in human history!

Muon g-2 Beyond Standard Model
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Difference > 5σ ?
Physics beyond the 

Standard Model!



Uncertainty Goal
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▪ Major experiments reduce risk of bias by scrambling (“blinding”) incoming data.

▪ All analysis is performed using blinded data.

▪ Muon g-2 had separate blinding for each year of data collection.

▪ Unblinding meetings are very exciting!

Blinding system
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Unblinding codes are kept 

in sealed envelopes, held 

by trusted peers outside 

the collaboration.

Run-1 Unblinding Meeting (2021)



Measuring Muons and 𝑎𝜇
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▪ In external B fields, muons precess.

▪ Precession frequency is proportional to muon magnetic moment, and to external B.

Precession
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Precession for a 

spinning top, 

from gravity.

Magnetic 

Field B

𝑤𝑠 = 𝑔 ∗
−𝑞

2𝑚
∗ 𝐵

𝑤𝑠 = 𝑔 − 2 +
2

𝛾
∗

−𝑞

2𝑚
∗ 𝐵

(Non-relativistic)

(Relativistic)

• With muons in a big magnetic storage 

ring, we need to measure precession.



▪ Special property of muon decays:

▪ Energy of emitted positrons is higher when spin is aligned with linear momentum!

Precession Frequency and Muon Decay
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▪ Special property of muon decays:

▪ And it’s lower (on average) when spin is counter-aligned with linear momentum.

Precession Frequency and Muon Decay

6/18/2024 David Kessler | Muon g-2 at Fermilab25

e
ν

ν



▪ With many aligned muons decaying, the # of high-energy positrons is 𝑁 𝑡 .

𝑁 𝑡 = 𝑁0 ∗ 𝑒
−
𝑡
𝜏 ∗ 1 + cos 𝜔𝑎 ∗ 𝑡 + 𝜑0

▪ Oscillates at 𝜔𝑎, based on the angle between muon spin and momentum vectors.

High-Energy Positron Plot
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Run-1 “wiggle plot” of 𝑁 𝑡 .

Fitting this provides 𝜔𝑎.



𝜔𝑎 = 𝜔𝑠 − 𝜔𝑐

𝝎𝒂, 𝝎𝒔, and 𝝎𝒄
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Spin Precession 

Frequency

Wiggle-plot 

Frequency

Momentum 

Cyclotron 

Frequency



▪ For muons moving on a circular path.

▪ Derived using centripetal force and Lorentz force.

𝛾 ∗ 𝑚𝑣2

𝑟
= 𝑞𝐵𝑣

𝑣

𝑟
=

𝑞

𝛾𝑚
∗ 𝐵

𝜔𝑐 = (−)
𝑞

𝛾𝑚
∗ 𝐵

Cyclotron Frequency 𝜔𝑐
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𝜔𝑎 = 𝜔𝑠 −𝜔𝑐

𝜔𝑎 = 𝑔 − 2 +
2

𝛾
∗

−𝑞

2𝑚
∗ 𝐵 −

−𝑞

𝛾𝑚
∗ 𝐵

𝜔𝑎 = −
𝑔 − 2

2
∗

𝑞

𝑚
∗ 𝐵

Getting 𝑎𝜇 
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𝑎𝜇



𝜔𝑎 = −
𝑞

𝑚𝜇
𝑎𝜇𝐵 − 𝑎𝜇

𝛾

𝛾 + 1
Ԧ𝛽 ∙ 𝐵 Ԧ𝛽 − 𝑎𝜇 −

1

𝛾2 − 1

Ԧ𝛽 × 𝐸

𝑐

(Sneak Peek: Less-simplified Version)
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Off-plane 

motion term

Electric field 

influence term

“Magic Momentum” 3.094 GeV/c 

shrinks these extra terms.



𝜔𝑎 = −𝑎𝜇 ∗
𝑞

𝑚
∗ 𝐵

▪ We send a bunch of muons into a big magnetic storage ring.

▪ One team measures 𝜔𝑎.

▪ One team measures 𝐵.

▪ Additional teams:

▪ Muon tracking team.

▪ Data processing team.

▪ Simulations team.

▪ Theory team.

▪ Engineering team.

▪ And more!

Measurement Teams
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Combine to get 𝑎𝜇!



The Muon Storage Ring
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The 

Muon g-2 

Storage 

Ring 

Magnet
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▪ Creates a strong and stable 

magnetic field.

▪ Analyzes muons, decay positrons, 

and magnetic field strength.

Ring Overview
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Cross-section Diagram

Ring Stations Diagram



The Big Move
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Map illustration from Symmetry Magazine, 

August 2013.

Storage ring 

moved from 

BNL to FNAL in 

Summer 2013.



The Big Move: Photos

6/18/2024 David Kessler | Muon g-2 at Fermilab36



▪ Superconductors create a 1.45-Tesla magnetic field.

▪ As strong as an MRI machine!

▪ Shimming tools stabilize the field (in time and space).

▪ Iron shims.

▪ Surface Correction Coils.

▪ Power Supply Feedback.

Superconducting Magnets
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LN2 storage, for cooling.



▪ Calorimeters measure positrons from muon decay.

▪ 24 stations around the ring.

▪ 9x6 arrays of PbF2 crystals with silicon photomultiplier tubes.

▪ Signals contain location, timing, and energy of positrons.

▪ Processed data creates “wiggle plot” for 𝜔𝑎.

Calorimeters
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Two calo stations.



▪ Trackers measure positrons too, but in 3D.

▪ 2 tracker stations, inside the ring.

▪ 3D cell arrays of straw tubes with argon-

ethane gas.

▪ Positron trajectories are analyzed to learn 

muon beam distribution.

▪ Important for both 𝜔𝑎 and B.

Trackers
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One tracker station.



▪ These adjust muon trajectories to make them orbit through the ring. 

▪ Inflector: cancels out magnetic field where muons enter the ring.

▪ Prevents deflection by gradient.

Inflector, Kickers, Quads
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Inflector diagram.



▪ Kickers: Fast magnetic pulse from 3 stations.

▪ “Kicks” initial muon trajectories

▪ Allows closed orbit.

Inflector, Kickers, Quads

6/18/2024 David Kessler | Muon g-2 at Fermilab41

Kicker plates.

~220 Gauss in < 1 microsecond!



▪ Quads: Electric quadrupole field focuses muon beam.

▪ Improves beam centering, reduces lost muons.

Inflector, Kickers, Quads
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𝑉+

𝑉−𝑉−

𝑉+



▪ https://gm2-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=9251

▪ Made by Adam Lyon.

Video
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https://gm2-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=9251


Magnetic Field 

Measurements
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▪ NMR probes measure magnetic fields via 

proton precession.

▪ Like what we do with muons.

▪ But much easier. Protons are plentiful and stable, 

with precisely-known 𝑔𝑝.

▪ NMR probes have many aligned protons 

precessing at 𝑤𝑝.

▪ Electrically induces “Free Induction Decay” (FID) 

signal in a coil.

Nuclear Magnetic Resonance (NMR)
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Sample FID signal: Frequency is 

proportional to field strength.

𝑤𝑝 = −
𝑔𝑝𝑞

2𝑚𝑝
𝐵



▪ The trolley maps the magnetic field inside the storage ring.

▪ Carries 17 NMR probes through the entire ring, stopping 

periodically to measure.

▪ Rides on rails, pulled by motorized fishing line.

▪ Can’t run while muons are present.

Trolley
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Trolley photographs and 

diagram.



▪ Fixed NMR probes track changes in field 

while muons are present.

▪ 378 fixed probes above and below beam region.

▪ Interpolation Analysis: 

▪ Combining fixed probes data with trolley data, to 

learn field inside beam region while muons are 

present.

Fixed Probes
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Storage Ring Cross-section 

Diagram



Calibration
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Fixed 

Probes

Trolley 

Probes

Plunging 

Probe

Absolute 

Probe
Calibrated 

in-ring by

Mapped 

by
Calibrated 

outside by

Storage 

Ring

Magnetic 

Field

Tracked 

by

Quad 

Transient 

Field

Kicker 

Transient 

Field

Quad Transient 

Magnetometer

Kicker 

Transient 

Magnetometer

• The trolley changes the field while measuring it.

• (Not a quantum thing, it’s just big and metal.)

• Minor effect, but major when the goal is 70 ppb!



Results (so far)
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▪ Run-1 result, published in 2021:

𝑎𝜇 = 116592040 54 ∗ 10−11. 

Published Results
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▪ Run-2/3 result, published in 2023:

𝑎𝜇 = 116592057(25) ∗ 10−11. 

▪ Consistent with BNL, with reduced 

uncertainty!



Total Data Collected
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Uncertainties
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Run-1 Uncertainties Table Run-2/3 Uncertainties Table

Statistical: 434 -> 201 ppb

Systematic: 157 -> 70 ppb



▪ Statistics: 

▪ More muons.

▪ Ring upgrades: 

▪ Thermal insulation.

▪ Kicker electronics.

▪ Muon beam centering.

▪ Systematic studies:

▪ Trolley calibration campaigns.

▪ Kicker and quad transient measurements.

▪ And many more!

Improvements between Runs
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Kicker transient field measurement comparison.

Storage ring before (left) and after (right) new thermal insulation.



▪ Data collection is complete!

▪ Runs 4, 5, and 6 are being processed and analyzed. 

▪ Overall uncertainty goal,140 ppb, is within reach!

Next Steps
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Conclusion
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Collaboration
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182 collaborators
33 Institutions

7 countries 

▪ Muon g-2 is a worldwide 

effort!

▪ Everyone working together 

makes it possible.

▪ We’re all excited to learn 

more about the universe!



Questions or Comments?
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