

Muon g-2 at Fermilab

David Kessler – University of Massachusetts, Amherst On behalf of the Muon g-2 Collaboration Fermilab Summer Lecture Series June 18, 2024

The E989 Muon g-2 Experiment

- Goal: Measure muon magnetic moment.
- Purpose: Search for physics beyond the Standard Model.
 - SM predicts one value.
 - Potential new models (supersymmetry) predict different values.
 - Precision measurement will give evidence for or against new models.

Muon g-2 Collaboration group photo, November 2014.

Presentation Overview

- Introduction: the Muon g-2 Experiment
- Background: Muons, Magnetic Moments, and "g"
- Goals: Significance of Muon g-2
- Methodology: Measuring Muons
- Design: Muon Storage Ring
- Design: Magnetic Field Probes
- Results (so far)
- Conclusion and Discussion

Background

9-22

Muon?

4 APPRIL CIT

Meet the Muon!

Standard Model Particles

Same charge, same spin, 207x larger mass.

Muon Decay

 $\mu^- \to e^- + \nu_\mu + \overline{\nu_e}$

Muon lifetime: 2.2 microseconds.

Discovering Muons

- Discovered in 1936 by Carl Anderson and Seth Neddermeyer.
 - Observed in cosmic ray showers.

Cosmic ray tracks visible in a magnetic cloud chamber.

Making Muons at Fermilab

- Particle accelerator provides protons.
- Protons hitting target create pions.
- Pions decay into muons.
- Filters select positive muons, with "magic momentum" 3.094 GeV/c.

Magnetic Moments

Muon Magnetic Moment $\vec{\mu}$:

 $\vec{\mu} = g * \left(\frac{q}{2m}\right) * \vec{S}$

Charge q and Spin \vec{S} make muons magnetic.

Magnetic moment $\vec{\mu}$ describes how strongly muons respond to magnetic fields.

The g-factor

Muon Magnetic Moment $\vec{\mu}$:

$$\vec{\mu} = g * \left(\frac{q}{2m}\right) * \vec{S}$$

The quantum correction factor "g". (It's the "g" in "Muon g-2".) Measuring it is our goal!

But a_{μ} makes equations nicer, so we usually end up writing a_{μ} instead.

$$a_{\mu} = \frac{g-2}{2}$$

Quantum Corrections

In quantum physics, all possible paths impact the outcome.

Basic Feynman Diagram: Muon interacts with magnetic field.

(With just this, g would be 2.)

Predicting "g"

 The Standard Model lets us calculate diagrams using all known particles, forces, and interactions.

- Standard Model Prediction (as of 2020)*:
 - *g* = 2.0023318362
 - (*Technically undetermined since 2021, due to two conflicting HVP calculations)
 Fermilab

Why this is important

The true value of "g"

All of physics goes into determining "g". Including undiscovered physics!

Testing the Standard Model

- The Standard Model is incomplete.
 - There are ideas for Beyond the Standard Model (BSM), but none have supporting evidence yet.
- This experiment will help clarify what's missing.
 - Agreement with theory -> Constrain BSM models
 - Disagreement with theory -> Confirm BSM models

Clarification

Supersymmetry Dark Matter?

"Humans might not know about them yet, but muons do!"

- *Technically true for all particles.
- Muon magnetic moment is special for two reasons:
 - High mass makes it more sensitive to possible supersymmetry particles.
 - We might have seen new physics in it already!

Brookhaven E821

- A muon magnetic moment experiment at Brookhaven National Lab, running 1997 – 2001.
- Found discrepancy with Standard Model!
- But, only by ~3.5σ.

Brookhaven E821 g-2 Experiment. Collaboration photo (left), Results comparison (above). Standard for a new discovery: 50

Muon g-2 Beyond Standard Model

- Several BSM models match Brookhaven's findings.
 - Supersymmetries mostly.
- Experimental uncertainty must be reduced before conclusions can be made.
- This motivated Muon g-2 at Fermilab:
 - Improve and redo Brookhaven's measurement with 4x lower uncertainty.
 - Uncertainty goal: 140 parts per billion (ppb).
 - One of the most precise measurements in human history!

Uncertainty Goal

Blinding system

- Major experiments reduce risk of bias by scrambling ("blinding") incoming data.
 - All analysis is performed using blinded data.
- Muon g-2 had separate blinding for each year of data collection.
- Unblinding meetings are very exciting!

Unblinding codes are kept in sealed envelopes, held by trusted peers outside the collaboration.

Run-1 Unblinding Meeting (2021)

Measuring Muons and a_{μ}

Precession

- In external B fields, muons precess.
- Precession frequency is proportional to muon magnetic moment, and to external B.

$$w_s = g * \left(\frac{-q}{2m}\right) * B$$
 (Non-relativistic)

$$w_s = \left(g - 2 + \frac{2}{\gamma}\right) * \left(\frac{-q}{2m}\right) * B$$
 (Relativistic)

• With muons in a big magnetic storage ring, we need to measure precession.

Precession for a spinning top, from gravity.

Precession Frequency and Muon Decay

- Special property of muon decays:
 - Energy of emitted positrons is higher when spin is aligned with linear momentum!

Precession Frequency and Muon Decay

- Special property of muon decays:
 - And it's lower (on average) when spin is counter-aligned with linear momentum.

High-Energy Positron Plot

• With many aligned muons decaying, the # of high-energy positrons is N(t).

$$N(t) = N_0 * e^{-\frac{t}{\tau}} * (1 + \cos(\omega_a * t + \varphi_0))$$

• Oscillates at ω_a , based on the **angle between muon spin and momentum vectors.**

 $\omega_a, \omega_s, \text{ and } \omega_c$

Cyclotron Frequency ω_c

- For muons moving on a circular path.
- Derived using centripetal force and Lorentz force.

$$\frac{\gamma * mv^2}{r} = qBv$$
$$\frac{v}{r} = \left(\frac{q}{\gamma m}\right) * B$$

$$\overrightarrow{\omega_c} = (-)\left(\frac{q}{\gamma m}\right) * \overrightarrow{B}$$

Getting a_{μ}

$$\omega_a = \omega_s - \omega_c$$

$$\omega_a = \left(g - 2 + \frac{2}{\gamma}\right) * \left(\frac{-q}{2m}\right) * B - \left(\frac{-q}{\gamma m}\right) * B$$

$$\omega_a = -\left(\frac{g-2}{2}\right) * \left(\frac{q}{m}\right) * B$$

$$a_\mu$$

🛟 Fermilab

(Sneak Peek: Less-simplified Version)

$$\vec{\omega}_a = -\frac{q}{m_\mu} \left[a_\mu \vec{B} - a_\mu \frac{\gamma}{\gamma + 1} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Off-plane motion term Electric field influence term

"Magic Momentum" 3.094 GeV/c shrinks these extra terms.

Measurement Teams

$$\omega_a = -a_\mu * \left(\frac{q}{m}\right) * B$$

- We send a bunch of muons into a big magnetic storage ring.
 - One team measures ω_a . One team measures *B*. Combine to get a_{μ} !

- Additional teams:
 - Muon tracking team.
 - Data processing team.
 - Simulations team.
 - Theory team.
 - Engineering team.
 - And more!

The Muon Storage Ring

The Muon g-2 Storage Ring Magnet

Ring Overview

- Creates a strong and stable magnetic field.
- Analyzes muons, decay positrons, and magnetic field strength.

The Big Move

Storage ring moved from BNL to FNAL in Summer 2013.

Map illustration from Symmetry Magazine, August 2013.

The Big Move: Photos

Superconducting Magnets

- Superconductors create a 1.45-Tesla magnetic field.
 - As strong as an MRI machine!
- Shimming tools stabilize the field (in time and space).
 - Iron shims.
 - Surface Correction Coils.
 - Power Supply Feedback.

LN2 storage, for cooling.

Calorimeters

- Calorimeters measure positrons from muon decay.
 - 24 stations around the ring.
 - 9x6 arrays of PbF2 crystals with silicon photomultiplier tubes.
 - Signals contain location, timing, and energy of positrons.
 - Processed data creates "wiggle plot" for ω_a .

Two calo stations.

Trackers

- Trackers measure positrons too, but in 3D.
 - 2 tracker stations, inside the ring.
 - 3D cell arrays of straw tubes with argonethane gas.
 - Positron trajectories are analyzed to learn muon beam distribution.
 - Important for both ω_a and B.

One tracker station.

Inflector, Kickers, Quads

- These adjust muon trajectories to make them orbit through the ring.
- Inflector: cancels out magnetic field where muons enter the ring.
 - Prevents deflection by gradient.

Inflector diagram.

Inflector, Kickers, Quads

- Kickers: Fast magnetic pulse from 3 stations.
 - "Kicks" initial muon trajectories
 - Allows closed orbit.

Kicker plates.

Inflector, Kickers, Quads

- Quads: Electric quadrupole field focuses muon beam.
 - Improves beam centering, reduces lost muons.

Video

- https://gm2-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=9251
 - Made by Adam Lyon.

Magnetic Field Measurements

Nuclear Magnetic Resonance (NMR)

- NMR probes measure magnetic fields via proton precession.
 - Like what we do with muons.
 - But much easier. Protons are plentiful and stable, with precisely-known g_p.
- NMR probes have many aligned protons precessing at w_p.
 - Electrically induces "Free Induction Decay" (FID) signal in a coil.

$$w_p = -\frac{g_p q}{2m_p} B$$

🛠 Fermilab

Trolley

- The trolley maps the magnetic field inside the storage ring.
 - Carries 17 NMR probes through the entire ring, stopping periodically to measure.
 - Rides on rails, pulled by motorized fishing line.
 - Can't run while muons are present.

Trolley photographs and diagram.

Fixed Probes

- Fixed NMR probes track changes in field while muons are present.
 - 378 fixed probes above and below beam region.
- Interpolation Analysis:
 - Combining fixed probes data with trolley data, to learn field inside beam region while muons are present.

Results (so far)

Published Results

- Run-1 result, published in 2021: $a_{\mu} = 116592040(54) * 10^{-11}.$
- Run-2/3 result, published in 2023: $a_{\mu} = 116592057(25) * 10^{-11}.$
- Consistent with BNL, with reduced uncertainty!

🛟 Fermilab

Total Data Collected

Uncertainties

Run-1 Uncertainties Table

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
C_{e}	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_{e}		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

Run-2/3 Uncertainties Table

Quantity	Correction (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		201
ω_a^m (systematic)		25
C_{e}	451	32
C_p	170	10
C_{pa}	-27	13
\hat{C}_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46
B_k	-21	13
B_q	-21	20
$\mu_{p}'(34.7^{\circ})/\mu_{e}$		11
m_{μ}/m_e		22
$g_e/2$		0
Total systematic for \mathcal{R}'_{μ}		70
Total external parameters		25
Total for a_{μ}	622	215

Statistical: 434 -> 201 ppb Systematic: 157 -> 70 ppb

Improvements between Runs

- Statistics:
 - More muons.
- Ring upgrades:
 - Thermal insulation.
 - Kicker electronics.
 - Muon beam centering.
- Systematic studies:
 - Trolley calibration campaigns.
 - Kicker and quad transient measurements.
- And many more!

Storage ring before (left) and after (right) new thermal insulation.

Kicker transient field measurement comparison.

Next Steps

- Data collection is complete!
- Runs 4, 5, and 6 are being processed and analyzed.
- Overall uncertainty goal,140 ppb, is within reach!

Conclusion

Collaboration

- Muon g-2 is a worldwide effort!
- Everyone working together makes it possible.
- We're all excited to learn more about the universe!

- Boston Cornell

 - James Madison
 - Kentucky

 - Northern Illinois

 - _

USA National Labs

- _ Argonne
- Brookhaven
- Fermilab _

China

- Shanghai Jiao Tong _
- Germany
 - Dresden
 - Mainz

- Frascati _
- Molise
- Naples
- Pisa
- Roma Tor Vergata _
- Trieste Udine
- Korea
 - CAPP/IBS _ KAIST _

Russia

- Budker/Novosibirsk JINR Dubna _
- $\mathbb{N}/$

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London _

182 collaborators 33 Institutions 7 countries

- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Regis
- Virginia

Washington

Questions or Comments?

