

Background strategy-I. S.Chekanov (ANL)

- Hard to invent something different from what we already know:
 - \rightarrow best "background "is background from actual data (side-bands, control regions etc..)
- But LO+PS MCs (with k-factors from NLO, NNLO) are unavoidable
 - Each study needs a dedicated set of background samples
 - What we call "background" MC for one study can be a "signal" MC for another
- It would be ideal to have overlaps between signal MC and "background" MC samples, assuming that some fraction of MC samples should be generated centrally.

Background strategy-II. pp collisions

- There is a well established set of processes which are very popular for background studies and can be reusable by many studies:
 - 1) Multijets "QCD"
 - 2) gamma+jet, gamma+gamma
 - 3) Z+N(jets). (N=0,1,2,3,4)
 - 4) W+N(jets)
 - 5) WW+WZ
 - 6) ttbar
 - 7) single top
 - 8) Z/W+gamma
- Example:
 - 3)-4) is background for ttbar, but ttbar is background for W/Z measurements!

Background strategy-III

- Multijets "QCD" → PYTHIA8/HERWIG++
- gamma+jet, gamma+gamma → **PYTHIA8/HERWIG++**
- Z+N(jets). (N=0,1,2,3,4) \rightarrow ALPGEN /SHERPA
- W+N(jets) → ALPGEN/SHERPA
- WW+WZ → **MADGRAPH**
- tī:
 - MC@NLO, ALPGEN/PYTHIA \rightarrow popular at ATLAS
 - MADGRAPH/PYTHIA → popular at CMS
- single top \rightarrow MC@NLO, ALPGEN
- Z/W+gamma \rightarrow **ALPGEN**

Watch the k-factors! Z+jets/W+jets – as large as 20-30% (for ALPGEN)

Notes: 1) ALPGEN – is rather challenging to generate (CPU intensive). 2) k-factor estimates may need to be redone if cannot find anything in the literature

Monte Carlo samples for backgrounds. . S.Chekanov (ANL)