Medical Device Sterilization: Broadening the Possibilities September 24-25, 2024

Title: Supercritical Carbon Dioxide Sterilization

Tony Eisenhut, NovaSterilis Inc. September 24, 2024

Medical Device Sterilization: Broadening the Possibilities September 24-25, 2024

AGENDA

- The Problems scCO₂ Sterilization Solves
- Technology Overview
- Applications
- Method of Action
- Kill Kinetics
- NovaSterilis Company Overview

The Problems scCO₂ Solves

- 1. Material Compatibility
 - a. EtO and gamma don't work generally new products and biologics
- 2. Improve Functionality
 - a. Traditional method works, but scCO2 improves performance - existing commercial products
- 3. Lowering Operational costs
 - a. Total cost and short turnaround times

Regulatory Experience

- Regulatory body clearances in Australia (TGA), U.S. (FDA), and Europe
- FDA Innovation Challenge Grant (2019)
 - Standing FDA meeting every 6 weeks
- 4 510(k) clearances, 1 EUA,
 - 1 therapeutic approved in Europe,multiple European device registrationsand TGA approvals

- ISO Standards
 - Sterilization ISO-14937
 - BI ISO-11138

scCO₂ Technology Platform

- Supercritical phase
 - Diffusivity of a Gas
 - Density of a Liquid
- Synergistic entrainers drive utility
 - Sterilization, Decellularization, Cleaning, Impregnating bioactives
- Process materials dry, hydrated, liquid

Critical Parameters

- Critical process parameters:
- Parameters optimized to preserve functionality
- Process materials in dry, hydrated, liquid state
- Models: In service: 20L 100L, 540L;
 Designed: 2,000L, 10m³
- Touchscreen automation (temperature, pressure, fill/empty rate, stir speed, time)

Kill Kinetics and Linearity

- Nova Process provides predictable linear kill kinetics under standard conditions
- *D* value tuned via critical parameters
 - Additive amount impacts D value
 - D value varies by material

(<i>B.</i>		Rinsed Tendon	Porcine Dermal Matrix	Ovine Tissue Matrix	Composite Scaffold
-	Slope (m)	-0.009	-0.17	-0.13	-0.1293
	D value (min)	12.4	6.3	7.9	7.63
	r^2	0.98	0.93	0.84	0.94

Comparison of *D* values (*B atrophaeus*) reported for the NovaSterilis process

scCO₂ Material Compatibility

Gamma – 25kGy scCO2-additive

Polymers

Natural – Collagens, hydrogels alginates, HA Synthetic – PLA, PLGA, PLEA, PCL, PDD, PLG PEEK, PMMA, polyurethanes, Tvvek

Devices

Regenerative Med. – allografts, xenografts Assistive – endoscopes, hearing aides, surgical instruments

scCO

Sterilization of EGF

APIs

Small molecules –

steroids, antibiotics,

riboflavin

Biologics - ligands,

growth factors, BMPs,

conjugated antibodies

Drug Delivery

PLA/PLGA microspheres, Polymer cakes, impregnated HA, sutures, pericardium, syringes, mesh (cotton, collagen)

NovaSterilis.com

Tony Eisenhut | Co-founder, CEO TRE1@novasterilis.com 607.227.5341

Keep up with us on LinkedIn

Mechanisms of Action

- NS 2006 paper PAA, HP, AA required
- Setlow scCO2/PAA mechanism Paper
 - Lethality damage to IM/not barrier rupture
 - Leaky membranes metabolism similar to other oxidizers
- Zhang et al. (2007) spore permeability impacted following scCO2 and HP treatment

Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL, Supercritical CO₂ Technology: The Next Standard Sterilization Technique? *Mater Sci Eng C Mater Biol Appl* 99:520-540 (2019)

Academic NovaGenesis Tech Talk Series

- 150 participants representing 60 Universities
- Academic partners share their latest scCO₂ research
- 3 meetings per year November will be our 11th Tech Talk

Company Overview

NOVASTERILIS Supercritical CO2 Solutions For Today And Tomorrow

- Global leader in scCO₂ sterilization founded 2001
- >500K surgeries completed w/ donor tissue sterilized by scCO₂
- Global client base
- 2007 EPA Green Chemistry Award

- Founded in 2009
- Preclinical CRO
- Virology, cellular biology, microbiology, materials science and chemistry
- Regulatory Experts on scCO₂ sterilization

Structured Tissue

- Decellularized Pig Aortas Mayo Clinic
 - Greatly damaged by gradiation.
 - Direct comparison with low g-radiation (3 kGy), PAA/EtOH perfusion, H2O2 perfusion, electrolyzed water.
 - Histological, mechanical and cross-linking analysis

JACC Basic Transl Sci. 2017 Feb;2(1):71-84. Supercritical Carbon Dioxide-Based Sterilization of Decellularized Heart Valves. Hennessy RS, Jana S, Tefft BJ, Helder MR, Young MD, Hennessy RR, Stoyles NJ, Lerman A. ✓ Sterile Valves
 ✓ scCO₂
 ✓ Et.PA. perfusion
 ✓ Tensile Strength
 ✓ scCO₂
 ✓ Et.PA perfusion
 ✓ No Cross-linking
 ✓ scCO₂

Reusable Medical Devices

Experimental setup:

- >10⁶ Bacillus spores dried on stainless steel wires
- Treatment completed
 - 3 times (n=30 for each challenge)

