PUBLICATION : <u>https://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp01083b</u>

Issue 24, 2021

From the journal: Physical Chemistry Chemical Physics

(first tests: 20 mL)

Snowball Chamber

Intro to the

Prof. Matthew Szydagis UAlbany SUNY May 21, 2024

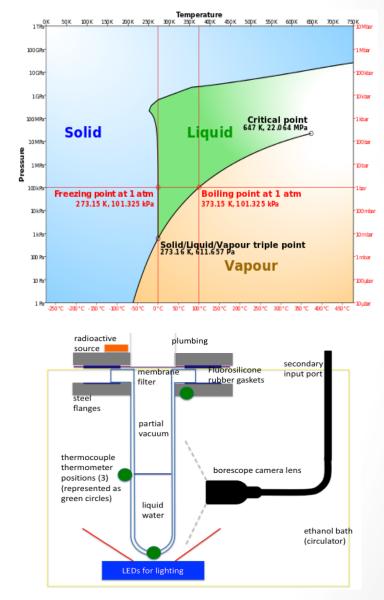
THANK YOU for the opportunity to present on this to you today!

Also available on arXiv (open access) https://arxiv.org/pdf/1807.09253.pdf

Informal Collaboration Right Now

• UCLA, BNL, RPI, Penn State, Duke/TUNL, with UAlbany

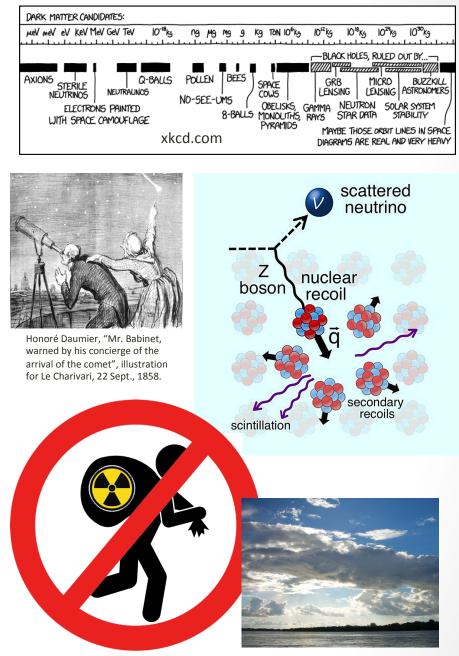
Faculty and lab staff : Alvine Kamaha, Milind Diwan, Aleksey Bolozdynya,
Minfang Yeh, Ethan Brown, Carmen Carmona, Luiz de Viveiros, Phil Barbeau,
+ Matthew Szydagis & Cecilia Levy (AND: Peter Wilson, Australia)



What is a **Snowball Chamber**?

done before, but only with betas and gammas, most recently by Varshneya (*Nature*, 1971) Physics Dept., Univ. of Roorkee, India

- The snowball chamber is analogous to the bubble & cloud chambers
 - It also relies on a phase transition
 - But it is a new instrument in nuclear & particle physics
- Supercooling of pure water in clean, smooth containers
 - Although, as with bubble chambers almost any other liquid should be usable
 - A liquid such as water can be cooled below its normal freezing point. Metastability

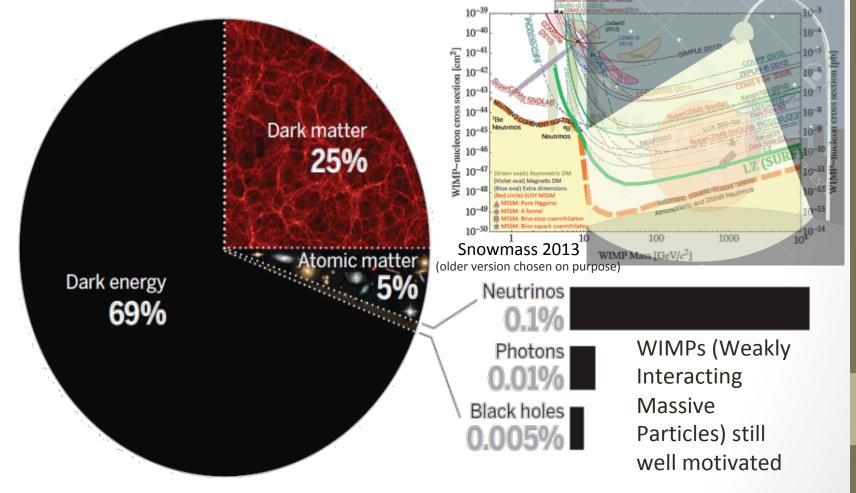


3

Motivations

• Dark Matter!

- Low masses: low threshold coupled to low-mass target (Hydrogen)
- Neutrinos (v)
 - Not just pure physics.
 Applied physics
 - Reactor monitoring: fuel rod theft
 - Channel: coherent scattering
- Neutrons: similar to both above -- elastic scattering
 - Fissile materials
 - Calibration for above
- Atmospheric physics



Dark Matter: A Lamppost Effect

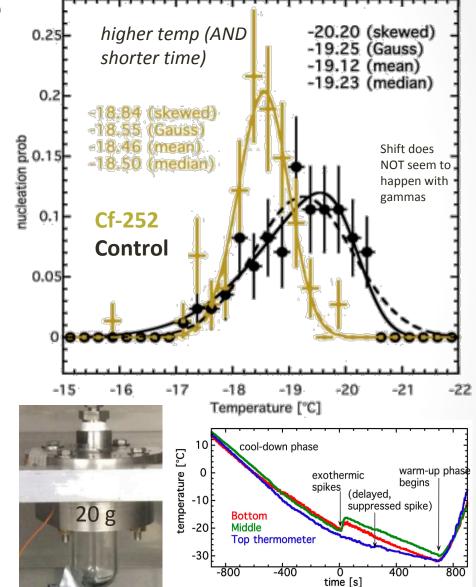
(or, streetlight)

The multiple components that compose our universe

Current composition (as the fractions evolve with time)

The Advantages and The Merits

- Scalability: v project examples (H₂O Cherenkov detectors)
 - Either in bulk or modular (many small tubes) OR in droplet form
- Purity: water is cheap and easy to purify. Done regularly
 - We've used a 20nm filter. Can upgrade to 5 but also try 100 (speed)
- No cryogenics (-30 °C isn't very cold) nor high voltage necessary
 - In general, excellent safety: no superheated liquid for instance
- The lightest possible element to search for the lightest dark matter still producing nuclear recoils: Hydrogen
 - Plus sensitivity to medium-mass dark matter with Oxygen
 - Possible recoil differentiation with AI/ML (more on this later)
- Lower "neutrino fog" for hydrogen than other elements
- WHY


bonding

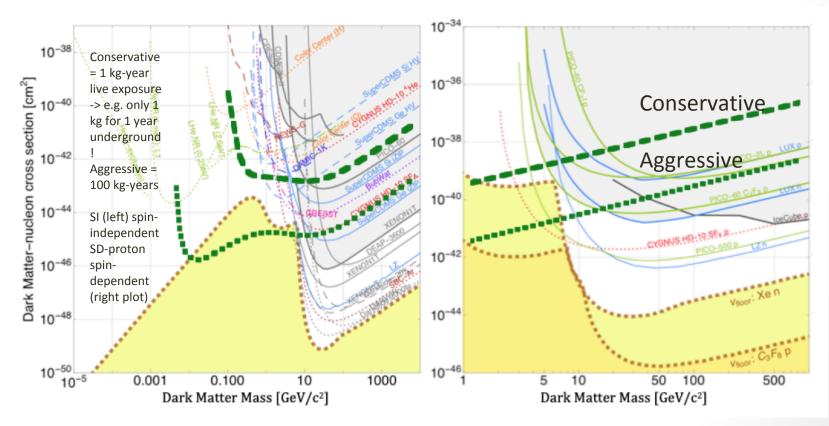
6

- <u>Directionality</u>, the holy grail of dark matter direct detection possible?
 - In the bulk of a liquid, not in gas. For rejecting solar vs
- Energy reconstruction: last summer we demonstrated the supercooling of WbLS (water-based liquid scintillator). A first! <u>https://www.mdpi.com/2218_1997/10/2/81</u>

Critical Proof of Concept (2018)

- Neutrons (²⁵²Cf) are able to freeze supercooled water
 - A world first. Made the journal cover (see slide 1)
- Yet another advantage: neutrons will multiply scatter in water (with a few-cm mean free path)
 - Won't mistake for WIMP
 - Observed in cam (slide 1)
- Our first results are consistent with keV-scale energy threshold <u>arXiv:2401.15064</u>
 - Theory papers suggest sub-keV very possible
- Cf corroborated by AmBe

. 7


What are the Backgrounds?

- Promises of dark matter search results without an understanding of **backgrounds** cannot be trusted.
- Cosmic-ray muons: minimize flux by going underground and adding shielding (either active or passive)
- Neutrons: covered (neutrinos also covered)
- Beta and gammas (e- recoils): adjust temperature to avoid them, and make experiment out of low-background materials
- Alphas: purify water, use timing as in PICO, use piezo-electric acoustic sensors as in PICO, adjust temperature to avoid (so we have plans A, B, C, D). Colder = lower energy, *dE/dx* thresholds
- The Wall: fiducialization, smooth vessels sourced from same suppliers as used for bubbler chambers, hydrophobic materials, super-hydrophobic coatings (again, multiple backup plans)
- Spontaneous bulk nucleation: perhaps no such thing! But!! optimize T just in case (Goldilocks). Go modular. Vibration iso

Projected WIMP Sensitivities

plots from DoE Cosmic Visions Report (arXiv:1707.04591) with our own curves overlaid. No directionality assumed

- No past, present, future (planned) experiment has comparable sensitivity at 1 GeV for WIMP-proton coupling (spin-dependent)
 - That is true even if the energy threshold is > 1 keV_{nr} not lower value
- Readiness: need O(3) yr. at least for calibrations + optimizations

C

Practicalities: Costs & Timeline

- Low cost: can deploy with minimal funds, as R&D effort first
 - Ideally need a postdoc and a graduate student, and some faculty (summer) salary but no luck with NSF, DOE (not even DMNI)
 - BUT already have most of the equipment, materials, supplies needed thanks to large startups and other types of seed funding
- So, another merit here clearly is the extreme inexpensiveness and simplicity of the project
 - Already had months-long surface-run tests sans major problems
- SURF Support: Monitoring, which can be infrequent
 - Remote monitoring by SnowBall collaboration members ideal too
 - Collaborators on other SURF projects: could kill 2 birds w/1 stone
- Space needs: very humble. ~1-2 m^3 for everything
 - The water vessels, the thermo-regulating fluid (oil or alcohol), the shielding (can be one and the same), the computer (DAQ)

➔ The Future

 Calibrate with mono-energetic neutron beam (e.g. TUNL, but UAlbany also has beam) at different Ts, n fluxes, n Es, etc.

Penn State?!

- Goal: become the first dark matter experiment to deploy 2 detectors, one in the Northern and one in the Southern Hemisphere, to study annual modulation and disprove false positives trivially
 - Conversations with Stawell gold mine in Australia have already begun through Dr. Peter Wilson. Objective: identical units
- While scale up would be nice, already competitive at O(1 kg) scale, so emphasis on LONG-TERM stable running
 - If underground and away from cosmic rays, we will not even need to solve major challenge from surface of the melting time
- Made it into Snowmass (HEP decadal survey) reports (and P5/ HEPAP spoke highly of small-project funding)
 AGILE!

Concluding With Sample Videos

- The snowball chamber captures the imagination like few other experiments can [PUBLIC ENGAGEMENT]
- These are the most recent videos, from BNL (sabbatical)
 - FLIR (low FPS) and high-speed camera (6,000 FPS example)
- FLIR.mov
- Evt14BNL.mp4 (both too large to embed in a PowerPoint)